User:Contribution/Successive superparticular complementary pair
Todo: Finish the article and move it When the article is finished and the table explained, move it to the main root |
For each pair of superparticular ratios [math]{s1}/{s2}[/math] and [math]{s2}/{s3}[/math], there exists a ratio [math]{a}/{b}[/math] such that [math]{s1}/{s2}[/math] and [math]{s2}/{s3}[/math] are [math]{a}/{b}[/math] complementary; it is observed that [math]a−b=1[/math] or [math]a−b=2[/math]. In other words, for each ratio [math]a/b[/math] where [math]a−b=1[/math] or [math]a−b=2[/math], there exists a pair of superparticular ratios [math]{s1}/{s2}[/math] and [math]{s2}/{s3}[/math] that are [math]{a}/{b}[/math] complementary.
Bellow is a table that show for equal divisions of [math]a/b[/math] the cent error in the mapping of superparticular ratios [math]{s1}/{s2}[/math] and [math]{s2}/{s3}[/math] that are [math]a/b[/math] complementary.
We can observe a converging sequence and pattern for low errors: 5, 7, 12; then 7, 9, 16; then 9, 11, 20; then 11, 13, 24; then 13, 15, 28; then 15, 17, 32; then 17, 19, 36; then 19, 21, 40; then 21, 23, 44; etc. --
Tuning | Intervals | Mappings | Various optimizations (cent) | |||||
---|---|---|---|---|---|---|---|---|
Name | Equal division | Steps per octave | Equave | SSC pair | Steps (Equave, SSC pair) | Errors (cent) | Pure Equave | Dave Benson |
Alpha 3/1 | 3ed3/1 | 1.89278926071437 | 3/1 | 2/1, 3/2 | 3\3<3/1>, 2\3<3/1>, 1\3<3/1> | 0, 67.970, -67.970 | 633.985000288462 | 629.130000247254 |
Beta 3/1 | 5ed3/1 | 3.15464876785729 | 5\5<3/1>, 3\5<3/1>, 2\5<3/1> | 0, -58.827, 58.827 | 380.391000173077 | 381.939079106782 | ||
Gamma 3/1 | 8ed3/1 | 5.04743802857166 | 8\8<3/1>, 5\8<3/1>, 3\8<3/1> | 0, -11.278, 11.278 | 237.744375108173 | 237.974540913462 | ||
Alpha 2/1 | 5ed2/1 | 5 | 2/1 | 3/2, 4/3 | 5\5<2/1>, 3\5<2/1>, 2\5<2/1> | 0, 18.045, -18.045 | 240 | 239.525131601721 |
Beta 2/1 | 7ed2/1 | 7 | 7\7<2/1>, 4\7<2/1>, 3\7<2/1> | 0, -16.241, 16.241 | 171.428571428571 | 171.648040552235 | ||
Gamma 2/1 | 12ed2/1 | 12 | 12\12<2/1>, 7\12<2/1>, 5\12<2/1> | 0, -1.955, 1.955 | 100 | 100.017935787756 | ||
Alpha 5/3 | 7ed5/3 | 9.49840814199707 | 5/3 | 4/3, 5/4 | 7\7<5/3>, 4\7<5/3>, 3\7<5/3> | 0, 7.303, -7.303 | 126.336958999921 | 126.238272015258 |
Beta 5/3 | 9ed5/3 | 12.2122390397105 | 9\9<5/3>, 5\9<5/3>, 4\9<5/3> | 0, -6.735, 6.735 | 98.2620792221608 | 98.3172808862904 | ||
Gamma 5/3 | 16ed5/3 | 21.7106471817076 | 16\16<5/3>, 9\16<5/3>, 7\16<5/3> | 0, -0.593, 0.593 | 55.2724195624655 | 55.2754932571412 | ||
Alpha 3/2 | 9ed3/2 | 15.3856016221631 | 3/2 | 5/4, 6/5 | 9\9<3/2>, 5\9<3/2>, 4\9<3/2> | 0, 3.661, -3.661 | 77.9950000961542 | 77.9649895501219 |
Beta 3/2 | 11ed3/2 | 18.8046242048660 | 11\11<3/2>, 6\11<3/2>, 5\11<3/2> | 0, -3.429, 3.429 | 63.8140909877625 | 63.8329325698408 | ||
Gamma 3/2 | 20ed3/2 | 34.1902258270291 | 20\20<3/2>, 11\20<3/2>, 9\20<3/2> | 0, -0.238, 0.238 | 35.0977500432694 | 35.0985422804417 | ||
Alpha 7/5 | 11ed7/5 | 22.6604698881676 | 7/5 | 6/5, 7/6 | 11\11<7/5>, 6\11<7/5>, 5\11<7/5> | 0, 2.093, -2.093 | 52.9556538731173 | 52.9441558718088 |
Beta 7/5 | 13ed7/5 | 26.7805553223799 | 13\13<7/5>, 7\13<7/5>, 6\13<7/5> | 0, -1.981, 1.981 | 44.8086302003300 | 44.8164289231577 | ||
Gamma 7/5 | 24ed7/5 | 49.4410252105475 | 24\24<7/5>, 13\24<7/5>, 11\24<7/5> | 0, -0.114, 0.114 | 24.2713413585121 | 24.2716042900130 | ||
Alpha 4/3 | 13ed4/3 | 31.3224709154917 | 4/3 | 7/6, 8/7 | 13\13<4/3>, 7\13<4/3>, 6\13<4/3> | 0, 1.307, -1.307 | 38.3111537795856 | 38.3060074376432 |
Beta 4/3 | 15ed4/3 | 36.1413125947981 | 15\15<4/3>, 8\15<4/3>, 7\15<4/3> | 0, -1.247, 1.247 | 33.2029999423075 | 33.2066890135066 | ||
Gamma 4/3 | 28ed4/3 | 67.4637835102899 | 28\28<4/3>, 15\28<4/3>, 13\28<4/3> | 0, -0.061, 0.061 | 17.7873213976647 | 17.7874251067289 | ||
Alpha 9/7 | 15ed9/7 | 41.3713123417559 | 9/7 | 8/7, 9/8 | 15\15<9/7>, 8\15<9/7>, 7\15<9/7> | 0, 0.871, -0.871 | 29.0056063507767 | 29.0030301458200 |
Beta 9/7 | 17ed9/7 | 46.8874873206567 | 17\17<9/7>, 9\17<9/7>, 8\17<9/7> | 0, -0.835, 0.835 | 25.5931820742147 | 25.5951070854196 | ||
Gamma 9/7 | 32ed9/7 | 88.2587996624126 | 32\32<9/7>, 17\32<9/7>, 15\32<9/7> | 0, -0.036, 0.036 | 13.5963779769266 | 13.5964243591413 | ||
Alpha 5/4 | 17ed5/4 | 52.8068232315916 | 5/4 | 9/8, 10/9 | 17\17<5/4>, 9\17<5/4>, 8\17<5/4> | 0, 0.609, -0.609 | 22.7243361096962 | 22.7229328303033 |
Beta 5/4 | 19ed5/4 | 59.0193906706024 | 19\19<5/4>, 10\19<5/4>, 9\19<5/4> | 0, -0.587, 0.587 | 20.3323007297281 | 20.3333837452881 | ||
Gamma 5/4 | 36ed5/4 | 111.826213902194 | 36\36<5/4>, 19\36<5/4>, 17\36<5/4> | 0, -0.022, 0.022 | 10.7309364962454 | 10.7309593208108 | ||
Alpha 11/9 | 19ed11/9 | 65.6288971357202 | 11/9 | 10/9, 11/10 | 19\19<11/9>, 10\19<11/9>, 9\19<11/9> | 0, 0.443, -0.443 | 18.2846284544201 | 18.2838119001578 |
Beta 11/9 | 21ed11/9 | 72.5372020973750 | 21\21<11/9>, 11\21<11/9>, 10\21<11/9> | 0, -0.428, 0.428 | 16.5432352682849 | 16.5438819815521 | ||
Gamma 11/9 | 40ed11/9 | 138.166099233095 | 40\40<11/9>, 21\40<11/9>, 19\40<11/9> | 0, -0.015, 0.015 | 8.68519851584955 | 8.68521062517612 | ||
Alpha 6/5 | 21ed6/5 | 79.8374643554025 | 6/5 | 11/10, 12/11 | 21\21<6/5>, 11\21<6/5>, 10\21<6/5> | 0, 0.332, -0.332 | 15.0305374762168 | 15.0300364433792 |
Beta 6/5 | 23ed6/5 | 87.4410323892504 | 23\23<6/5>, 12\23<6/5>, 11\23<6/5> | 0, -0.322, 0.322 | 13.7235342174153 | 13.7239395296205 | ||
Gamma 6/5 | 44ed6/5 | 167.278496744653 | 44\44<6/5>, 23\44<6/5>, 21\44<6/5> | 0, -0.010, 0.010 | 7.17366561364892 | 7.17367244048030 | ||
Alpha 13/11 | 23ed13/11 | 95.4324773621886 | 13/11 | 12/11, 13/12 | 23\23<13/11>, 12\23<13/11>, 11\23<13/11> | 0, 0.255, -0.255 | 12.5743356262850 | 12.5740145066190 |
Beta 13/11 | 25ed13/11 | 103.730953654553 | 25\25<13/11>, 13\25<13/11>, 12\25<13/11> | 0, -0.248, 0.248 | 11.5683887761822 | 11.5686531732080 | ||
Gamma 13/11 | 48ed13/11 | 199.163431016741 | 48\48<13/11>, 25\48<13/11>, 23\48<13/11> | 0, -0.007, 0.007 | 6.02520248759487 | 6.02520653404413 | ||
Alpha 7/6 | 25ed7/6 | 112.413902640048 | 7/6 | 13/12, 14/13 | 25\25<7/6>, 13\25<7/6>, 12\25<7/6> | 0, 0.200, -0.200 | 10.6748362241495 | 10.6746227806420 |
Beta 7/6 | 27ed7/6 | 121.407014851252 | 27\27<7/6>, 14\27<7/6>, 13\27<7/6> | 0, -0.195, 0.195 | 9.88410761495324 | 9.88428600096291 | ||
Gamma 7/6 | 52ed7/6 | 233.820917491300 | 52\52<7/6>, 27\52<7/6>, 25\52<7/6> | 0, -0.005, 0.005 | 5.13213280007188 | 5.13213530145284 | ||
Alpha 15/13 | 27ed15/13 | 130.781715879411 | 15/13 | 14/13, 15/14 | 27\27<15/13>, 14\27<15/13>, 13\27<15/13> | 0, 0.160, -0.160 | 9.17559455410784 | 9.17544822955784 |
Beta 15/13 | 29ed15/13 | 140.469250388997 | 29\29<15/13>, 15\29<15/13>, 14\29<15/13> | 0, -0.156, 0.156 | 8.54279492968661 | 8.54291879716245 | ||
Gamma 15/13 | 56ed15/13 | 271.250966268408 | 56\56<15/13>, 29\56<15/13>, 27\56<15/13> | 0, -0.004, 0.004 | 4.42394737430199 | 4.42394897687108 | ||
Alpha 8/7 | 29ed8/7 | 150.535899020849 | 8/7 | 15/14, 16/15 | 29\29<8/7>, 15\29<8/7>, 14\29<8/7> | 0, 0.130, -0.130 | 7.97152046658190 | 7.97141745648869 |
Beta 8/7 | 31ed8/7 | 160.917685160217 | 31\31<8/7>, 16\31<8/7>, 15\31<8/7> | 0, -0.127, 0.127 | 7.45722882357662 | 7.45731699769858 | ||
Gamma 8/7 | 60ed8/7 | 311.453584181066 | 60\60<8/7>, 31\60<8/7>, 29\60<8/7> | 0, -0.003, 0.003 | 3.85290155884792 | 3.85290261769161 |
Coincidence?
As a coincidence (?), all Alpha scales are (s1 + s2)ED(a / b), all Beta scales are (s2 + s3)ED(a / b), and all Gamma scales are (s1 + s2 + s2 + s3)ED(a / b).