33edf
Jump to navigation
Jump to search
Prime factorization
3 × 11
Step size
21.2714¢
Octave
56\33edf (1191.2¢)
Twelfth
89\33edf (1893.15¢)
Consistency limit
2
Distinct consistency limit
2
← 32edf | 33edf | 34edf → |
33EDF is the equal division of the just perfect fifth into 33 parts of 21.2714 cents each, corresponding to 56.4139 edo (similar to every fifth step of 282edo).
It is related to the regular temperament which tempers out |-131 131 -33> in the 5-limit, which is supported by 113, 282, 395, 677, 959, 1072, 1467, and 1749 EDOs.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -8.80 | -8.80 | +3.66 | +0.23 | +3.66 | -7.95 | -5.14 | +3.66 | -8.57 | -3.40 | -5.14 |
Relative (%) | -41.4 | -41.4 | +17.2 | +1.1 | +17.2 | -37.4 | -24.2 | +17.2 | -40.3 | -16.0 | -24.2 | |
Steps (reduced) |
56 (23) |
89 (23) |
113 (14) |
131 (32) |
146 (14) |
158 (26) |
169 (4) |
179 (14) |
187 (22) |
195 (30) |
202 (4) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.19 | +4.52 | -8.57 | +7.33 | +8.73 | -5.14 | +7.61 | +3.90 | +4.52 | +9.07 | -4.08 |
Relative (%) | +24.4 | +21.2 | -40.3 | +34.5 | +41.0 | -24.2 | +35.8 | +18.3 | +21.2 | +42.6 | -19.2 | |
Steps (reduced) |
209 (11) |
215 (17) |
220 (22) |
226 (28) |
231 (0) |
235 (4) |
240 (9) |
244 (13) |
248 (17) |
252 (21) |
255 (24) |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |