33edf

From Xenharmonic Wiki
Jump to navigation Jump to search
← 32edf 33edf 34edf →
Prime factorization 3 × 11
Step size 21.2714¢ 
Octave 56\33edf (1191.2¢)
Twelfth 89\33edf (1893.15¢)
Consistency limit 2
Distinct consistency limit 2

33 equal divisions of the perfect fifth (abbreviated 33edf or 33ed3/2) is a nonoctave tuning system that divides the interval of 3/2 into 33 equal parts of about 21.3⁠ ⁠¢ each. Each step represents a frequency ratio of (3/2)1/33, or the 33rd root of 3/2.

33edf corresponds to 56.4139edo, similar to every fifth step of 282edo. It is related to the regular temperament which tempers out [-131 131 -33 in the 5-limit, which is supported by 113-, 282-, 395-, 677-, 959-, 1072-, 1467-, and 1749edo.

Harmonics

Approximation of harmonics in 33edf
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -8.80 -8.80 +3.66 +0.23 +3.66 -7.95 -5.14 +3.66 -8.57 -3.40 -5.14
Relative (%) -41.4 -41.4 +17.2 +1.1 +17.2 -37.4 -24.2 +17.2 -40.3 -16.0 -24.2
Steps
(reduced)
56
(23)
89
(23)
113
(14)
131
(32)
146
(14)
158
(26)
169
(4)
179
(14)
187
(22)
195
(30)
202
(4)
Approximation of harmonics in 33edf (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.19 +4.52 -8.57 +7.33 +8.73 -5.14 +7.61 +3.90 +4.52 +9.07 -4.08
Relative (%) +24.4 +21.2 -40.3 +34.5 +41.0 -24.2 +35.8 +18.3 +21.2 +42.6 -19.2
Steps
(reduced)
209
(11)
215
(17)
220
(22)
226
(28)
231
(0)
235
(4)
240
(9)
244
(13)
248
(17)
252
(21)
255
(24)


Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.