113edo
← 112edo | 113edo | 114edo → |
113 equal divisions of the octave (abbreviated 113edo or 113ed2), also called 113-tone equal temperament (113tet) or 113 equal temperament (113et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 113 equal parts of about 10.6 ¢ each. Each step represents a frequency ratio of 21/113, or the 113th root of 2.
Theory
113edo is distinctly consistent in the 13-odd-limit with a flat tendency. As an equal temperament, it tempers out the amity comma and the ampersand comma in the 5-limit; 225/224, 1029/1024 and 1071875/1062882 in the 7-limit; 243/242, 385/384, 441/440 and 540/539 in the 11-limit; 325/324, 364/363, 729/728, and 1625/1617 in the 13-limit. It notably supports the 5-limit amity temperament, 7-limit amicable temperament, 7- and 11-limit miracle temperament, and 13-limit manna temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -1.07 | -4.01 | -2.45 | +0.89 | -1.59 | +1.24 | -0.17 | -1.73 | +0.51 | +1.87 |
Relative (%) | +0.0 | -10.1 | -37.8 | -23.1 | +8.4 | -15.0 | +11.7 | -1.6 | -16.3 | +4.8 | +17.6 | |
Steps (reduced) |
113 (0) |
179 (66) |
262 (36) |
317 (91) |
391 (52) |
418 (79) |
462 (10) |
480 (28) |
511 (59) |
549 (97) |
560 (108) |
Subsets and supersets
113edo is the 30th prime edo, following 109edo and before 127edo.
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation |
---|---|---|---|
0 | 0 | 1/1 | D |
1 | 10.6 | ^D, ^^E♭♭ | |
2 | 21.2 | ^^D, ^3E♭♭ | |
3 | 31.9 | ^3D, ^4E♭♭ | |
4 | 42.5 | 40/39, 41/40, 42/41, 43/42 | ^4D, v5E♭ |
5 | 53.1 | 32/31, 33/32, 34/33 | ^5D, v4E♭ |
6 | 63.7 | 27/26, 28/27 | v4D♯, v3E♭ |
7 | 74.3 | 24/23 | v3D♯, vvE♭ |
8 | 85 | 21/20, 41/39 | vvD♯, vE♭ |
9 | 95.6 | 19/18 | vD♯, E♭ |
10 | 106.2 | 17/16, 33/31 | D♯, ^E♭ |
11 | 116.8 | 31/29, 46/43 | ^D♯, ^^E♭ |
12 | 127.4 | 14/13 | ^^D♯, ^3E♭ |
13 | 138.1 | 13/12 | ^3D♯, ^4E♭ |
14 | 148.7 | 12/11 | ^4D♯, v5E |
15 | 159.3 | 23/21, 34/31, 45/41 | ^5D♯, v4E |
16 | 169.9 | 32/29, 43/39 | v4D𝄪, v3E |
17 | 180.5 | 10/9 | v3D𝄪, vvE |
18 | 191.2 | 19/17, 29/26, 48/43 | vvD𝄪, vE |
19 | 201.8 | 9/8 | E |
20 | 212.4 | 26/23, 43/38 | ^E, ^^F♭ |
21 | 223 | 33/29, 41/36 | ^^E, ^3F♭ |
22 | 233.6 | ^3E, ^4F♭ | |
23 | 244.2 | 38/33 | ^4E, v5F |
24 | 254.9 | 22/19 | ^5E, v4F |
25 | 265.5 | 7/6 | v4E♯, v3F |
26 | 276.1 | 27/23, 34/29 | v3E♯, vvF |
27 | 286.7 | 46/39 | vvE♯, vF |
28 | 297.3 | 19/16 | F |
29 | 308 | 37/31, 43/36 | ^F, ^^G♭♭ |
30 | 318.6 | ^^F, ^3G♭♭ | |
31 | 329.2 | 23/19, 29/24 | ^3F, ^4G♭♭ |
32 | 339.8 | 28/23 | ^4F, v5G♭ |
33 | 350.4 | 38/31 | ^5F, v4G♭ |
34 | 361.1 | 16/13 | v4F♯, v3G♭ |
35 | 371.7 | 26/21 | v3F♯, vvG♭ |
36 | 382.3 | vvF♯, vG♭ | |
37 | 392.9 | vF♯, G♭ | |
38 | 403.5 | 24/19 | F♯, ^G♭ |
39 | 414.2 | 33/26, 47/37 | ^F♯, ^^G♭ |
40 | 424.8 | 23/18 | ^^F♯, ^3G♭ |
41 | 435.4 | 9/7 | ^3F♯, ^4G♭ |
42 | 446 | 22/17 | ^4F♯, v5G |
43 | 456.6 | 43/33 | ^5F♯, v4G |
44 | 467.3 | 38/29 | v4F𝄪, v3G |
45 | 477.9 | 29/22 | v3F𝄪, vvG |
46 | 488.5 | vvF𝄪, vG | |
47 | 499.1 | 4/3 | G |
48 | 509.7 | 43/32 | ^G, ^^A♭♭ |
49 | 520.4 | 27/20 | ^^G, ^3A♭♭ |
50 | 531 | ^3G, ^4A♭♭ | |
51 | 541.6 | 26/19, 41/30 | ^4G, v5A♭ |
52 | 552.2 | 11/8 | ^5G, v4A♭ |
53 | 562.8 | 18/13 | v4G♯, v3A♭ |
54 | 573.5 | 32/23, 39/28, 46/33 | v3G♯, vvA♭ |
55 | 584.1 | 7/5 | vvG♯, vA♭ |
56 | 594.7 | 31/22 | vG♯, A♭ |
57 | 605.3 | 44/31 | G♯, ^A♭ |
58 | 615.9 | 10/7 | ^G♯, ^^A♭ |
59 | 626.5 | 23/16, 33/23 | ^^G♯, ^3A♭ |
60 | 637.2 | 13/9 | ^3G♯, ^4A♭ |
61 | 647.8 | 16/11 | ^4G♯, v5A |
62 | 658.4 | 19/13, 41/28 | ^5G♯, v4A |
63 | 669 | v4G𝄪, v3A | |
64 | 679.6 | 40/27 | v3G𝄪, vvA |
65 | 690.3 | vvG𝄪, vA | |
66 | 700.9 | 3/2 | A |
67 | 711.5 | ^A, ^^B♭♭ | |
68 | 722.1 | 41/27, 44/29, 47/31 | ^^A, ^3B♭♭ |
69 | 732.7 | 29/19 | ^3A, ^4B♭♭ |
70 | 743.4 | 43/28 | ^4A, v5B♭ |
71 | 754 | 17/11 | ^5A, v4B♭ |
72 | 764.6 | 14/9 | v4A♯, v3B♭ |
73 | 775.2 | 36/23 | v3A♯, vvB♭ |
74 | 785.8 | vvA♯, vB♭ | |
75 | 796.5 | 19/12 | vA♯, B♭ |
76 | 807.1 | 43/27 | A♯, ^B♭ |
77 | 817.7 | ^A♯, ^^B♭ | |
78 | 828.3 | 21/13 | ^^A♯, ^3B♭ |
79 | 838.9 | 13/8 | ^3A♯, ^4B♭ |
80 | 849.6 | 31/19 | ^4A♯, v5B |
81 | 860.2 | 23/14 | ^5A♯, v4B |
82 | 870.8 | 38/23, 43/26, 48/29 | v4A𝄪, v3B |
83 | 881.4 | v3A𝄪, vvB | |
84 | 892 | vvA𝄪, vB | |
85 | 902.7 | 32/19 | B |
86 | 913.3 | 39/23 | ^B, ^^C♭ |
87 | 923.9 | 29/17, 46/27 | ^^B, ^3C♭ |
88 | 934.5 | 12/7 | ^3B, ^4C♭ |
89 | 945.1 | 19/11 | ^4B, v5C |
90 | 955.8 | 33/19 | ^5B, v4C |
91 | 966.4 | v4B♯, v3C | |
92 | 977 | v3B♯, vvC | |
93 | 987.6 | 23/13 | vvB♯, vC |
94 | 998.2 | 16/9 | C |
95 | 1008.8 | 34/19, 43/24 | ^C, ^^D♭♭ |
96 | 1019.5 | 9/5 | ^^C, ^3D♭♭ |
97 | 1030.1 | 29/16 | ^3C, ^4D♭♭ |
98 | 1040.7 | 31/17, 42/23 | ^4C, v5D♭ |
99 | 1051.3 | 11/6 | ^5C, v4D♭ |
100 | 1061.9 | 24/13 | v4C♯, v3D♭ |
101 | 1072.6 | 13/7 | v3C♯, vvD♭ |
102 | 1083.2 | 43/23 | vvC♯, vD♭ |
103 | 1093.8 | 32/17 | vC♯, D♭ |
104 | 1104.4 | 36/19 | C♯, ^D♭ |
105 | 1115 | 40/21 | ^C♯, ^^D♭ |
106 | 1125.7 | 23/12 | ^^C♯, ^3D♭ |
107 | 1136.3 | 27/14 | ^3C♯, ^4D♭ |
108 | 1146.9 | 31/16, 33/17 | ^4C♯, v5D |
109 | 1157.5 | 39/20, 41/21 | ^5C♯, v4D |
110 | 1168.1 | v4C𝄪, v3D | |
111 | 1178.8 | v3C𝄪, vvD | |
112 | 1189.4 | vvC𝄪, vD | |
113 | 1200 | 2/1 | D |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-179 113⟩ | [⟨113 179]] | +0.338 | 0.338 | 3.18 |
2.3.5 | 1600000/1594323, 34171875/33554432 | [⟨113 179 262]] | +0.801 | 0.712 | 6.70 |
2.3.5.7 | 225/224, 1029/1024, 1071875/1062882 | [⟨113 179 262 317]] | +0.820 | 0.617 | 5.81 |
2.3.5.7.11 | 225/224, 243/242, 385/384, 980000/970299 | [⟨113 179 262 317 391]] | +0.604 | 0.700 | 6.59 |
2.3.5.7.11.13 | 225/224, 243/242, 325/324, 385/384, 1875/1859 | [⟨113 179 262 317 391 418]] | +0.575 | 0.643 | 6.05 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 4\113 | 42.48 | 40/39 | Humorous |
1 | 6\113 | 63.72 | 28/27 | Sycamore / betic |
1 | 8\113 | 84.96 | 21/20 | Amicable / pseudoamical / pseudoamorous |
1 | 11\113 | 116.81 | 15/14~16/15 | Miracle / manna |
1 | 13\113 | 138.05 | 27/25 | Quartemka |
1 | 22\113 | 233.63 | 8/7 | Slendric |
1 | 27\113 | 286.73 | 13/11 | Gamity |
1 | 29\113 | 307.96 | 3200/2673 | Familia |
1 | 32\113 | 339.82 | 243/200 | Houborizic |
1 | 34\113 | 360.06 | 16/13 | Phicordial |
1 | 37\113 | 392.92 | 2744/2187 | Emmthird |
1 | 47\113 | 499.12 | 4/3 | Gracecordial |
1 | 56\113 | 594.69 | 55/39 | Gaster |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct