113edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 112edo113edo114edo →
Prime factorization 113 (prime)
Step size 10.6195¢
Fifth 66\113 (700.885¢)
Semitones (A1:m2) 10:9 (106.2¢ : 95.58¢)
Consistency limit 13
Distinct consistency limit 13

113 equal divisions of the octave (abbreviated 113edo or 113ed2), also called 113-tone equal temperament (113tet) or 113 equal temperament (113et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 113 equal parts of about 10.6 ¢ each. Each step represents a frequency ratio of 21/113, or the 113th root of 2.

Theory

113edo is distinctly consistent in the 13-odd-limit with a flat tendency. As a temperament, it tempers out the amity comma and the ampersand in the 5-limit; 225/224, 1029/1024 and 1071875/1062882 in the 7-limit; 243/242, 385/384, 441/440 and 540/539 in the 11-limit; 325/324, 364/363, 729/728, and 1625/1617 in the 13-limit. It notably supports the 5-limit amity temperament, 7-limit amicable temperament, 7- and 11-limit miracle temperament, and 13-limit manna temperament.

Prime harmonics

Approximation of prime harmonics in 113edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 -1.07 -4.01 -2.45 +0.89 -1.59 +1.24 -0.17 -1.73 +0.51 +1.87
relative (%) +0 -10 -38 -23 +8 -15 +12 -2 -16 +5 +18
Steps
(reduced)
113
(0)
179
(66)
262
(36)
317
(91)
391
(52)
418
(79)
462
(10)
480
(28)
511
(59)
549
(97)
560
(108)

Subsets and supersets

113edo is the 30th prime edo.

Intervals

Steps Cents Ups and downs notation Approximate ratios
0 0 D 1/1
1 10.6195 ↑D, ↓8E♭
2 21.2389 ↑↑D, ↓7E♭ 78/77, 81/80
3 31.8584 3D, ↓6E♭ 49/48, 50/49, 55/54, 56/55
4 42.4779 4D, ↓5E♭ 40/39
5 53.0973 5D, ↓4E♭ 33/32, 65/63
6 63.7168 6D, ↓3E♭ 27/26, 28/27, 80/77
7 74.3363 7D, ↓↓E♭
8 84.9558 8D, ↓E♭ 21/20, 81/77
9 95.5752 9D, E♭ 55/52
10 106.195 D♯, ↓9E 52/49
11 116.814 ↑D♯, ↓8E 15/14, 77/72
12 127.434 ↑↑D♯, ↓7E 14/13
13 138.053 3D♯, ↓6E 13/12
14 148.673 4D♯, ↓5E 12/11, 49/45
15 159.292 5D♯, ↓4E
16 169.912 6D♯, ↓3E 54/49
17 180.531 7D♯, ↓↓E 10/9, 72/65
18 191.15 8D♯, ↓E 39/35
19 201.77 E 9/8, 55/49
20 212.389 ↑E, ↓8F 44/39
21 223.009 ↑↑E, ↓7F
22 233.628 3E, ↓6F 8/7, 55/48, 63/55
23 244.248 4E, ↓5F 15/13
24 254.867 5E, ↓4F 65/56, 81/70
25 265.487 6E, ↓3F 7/6, 64/55
26 276.106 7E, ↓↓F
27 286.726 8E, ↓F 13/11, 33/28
28 297.345 F 32/27, 77/65
29 307.965 ↑F, ↓8G♭
30 318.584 ↑↑F, ↓7G♭ 6/5, 65/54, 77/64
31 329.204 3F, ↓6G♭ 40/33, 63/52
32 339.823 4F, ↓5G♭ 39/32
33 350.442 5F, ↓4G♭ 11/9, 27/22, 49/40, 60/49
34 361.062 6F, ↓3G♭ 16/13
35 371.681 7F, ↓↓G♭ 26/21
36 382.301 8F, ↓G♭ 5/4, 56/45, 81/65
37 392.92 9F, G♭ 49/39
38 403.54 F♯, ↓9G 63/50
39 414.159 ↑F♯, ↓8G 14/11, 33/26, 80/63
40 424.779 ↑↑F♯, ↓7G
41 435.398 3F♯, ↓6G 9/7, 77/60
42 446.018 4F♯, ↓5G 35/27
43 456.637 5F♯, ↓4G 13/10
44 467.257 6F♯, ↓3G 21/16, 55/42, 72/55
45 477.876 7F♯, ↓↓G
46 488.496 8F♯, ↓G 65/49
47 499.115 G 4/3
48 509.735 ↑G, ↓8A♭
49 520.354 ↑↑G, ↓7A♭ 27/20
50 530.973 3G, ↓6A♭ 49/36
51 541.593 4G, ↓5A♭
52 552.212 5G, ↓4A♭ 11/8
53 562.832 6G, ↓3A♭ 18/13
54 573.451 7G, ↓↓A♭ 39/28
55 584.071 8G, ↓A♭ 7/5
56 594.69 9G, A♭ 55/39
57 605.31 G♯, ↓9A 78/55
58 615.929 ↑G♯, ↓8A 10/7, 77/54
59 626.549 ↑↑G♯, ↓7A 56/39
60 637.168 3G♯, ↓6A 13/9, 81/56
61 647.788 4G♯, ↓5A 16/11
62 658.407 5G♯, ↓4A
63 669.027 6G♯, ↓3A 72/49, 81/55
64 679.646 7G♯, ↓↓A 40/27, 77/52
65 690.265 8G♯, ↓A
66 700.885 A 3/2
67 711.504 ↑A, ↓8B♭
68 722.124 ↑↑A, ↓7B♭
69 732.743 3A, ↓6B♭ 32/21, 55/36, 75/49
70 743.363 4A, ↓5B♭ 20/13
71 753.982 5A, ↓4B♭ 54/35, 65/42
72 764.602 6A, ↓3B♭ 14/9, 81/52
73 775.221 7A, ↓↓B♭
74 785.841 8A, ↓B♭ 11/7, 52/33, 63/40
75 796.46 9A, B♭
76 807.08 A♯, ↓9B 78/49
77 817.699 ↑A♯, ↓8B 8/5, 45/28, 77/48
78 828.319 ↑↑A♯, ↓7B 21/13
79 838.938 3A♯, ↓6B 13/8, 81/50
80 849.558 4A♯, ↓5B 18/11, 44/27, 49/30, 80/49
81 860.177 5A♯, ↓4B 64/39
82 870.796 6A♯, ↓3B 33/20, 81/49
83 881.416 7A♯, ↓↓B 5/3
84 892.035 8A♯, ↓B
85 902.655 B 27/16
86 913.274 ↑B, ↓8C 22/13, 56/33
87 923.894 ↑↑B, ↓7C
88 934.513 3B, ↓6C 12/7, 55/32
89 945.133 4B, ↓5C
90 955.752 5B, ↓4C 26/15
91 966.372 6B, ↓3C 7/4
92 976.991 7B, ↓↓C
93 987.611 8B, ↓C 39/22
94 998.23 C 16/9
95 1008.85 ↑C, ↓8D♭ 70/39
96 1019.47 ↑↑C, ↓7D♭ 9/5, 65/36
97 1030.09 3C, ↓6D♭ 49/27
98 1040.71 4C, ↓5D♭
99 1051.33 5C, ↓4D♭ 11/6
100 1061.95 6C, ↓3D♭ 24/13
101 1072.57 7C, ↓↓D♭ 13/7
102 1083.19 8C, ↓D♭ 28/15
103 1093.81 9C, D♭ 49/26
104 1104.42 C♯, ↓9D
105 1115.04 ↑C♯, ↓8D 40/21
106 1125.66 ↑↑C♯, ↓7D
107 1136.28 3C♯, ↓6D 27/14, 52/27, 77/40
108 1146.9 4C♯, ↓5D 64/33
109 1157.52 5C♯, ↓4D 39/20
110 1168.14 6C♯, ↓3D 49/25, 55/28
111 1178.76 7C♯, ↓↓D 77/39
112 1189.38 8C♯, ↓D
113 1200 D 2/1

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-179 113 [113 179]] +0.338 0.338 3.18
2.3.5 1600000/1594323, 34171875/33554432 [113 179 262]] +0.801 0.712 6.70
2.3.5.7 225/224, 1029/1024, 1071875/1062882 [113 179 262 317]] +0.820 0.617 5.81
2.3.5.7.11 225/224, 243/242, 385/384, 980000/970299 [113 179 262 317 391]] +0.604 0.700 6.59
2.3.5.7.11.13 225/224, 243/242, 325/324, 385/384, 1875/1859 [113 179 262 317 391 418]] +0.575 0.643 6.05

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(Reduced)
Cents
(Reduced)
Associated
Ratio
Temperaments
1 4\113 42.48 40/39 Humorous
1 6\113 63.72 28/27 Sycamore / betic
1 8\113 84.96 21/20 Amicable / pseudoamical / pseudoamorous
1 11\113 116.81 15/14~16/15 Miracle / manna
1 13\113 138.05 27/25 Quartemka
1 22\113 233.63 8/7 Slendric
1 27\113 286.73 13/11 Gamity
1 29\113 307.96 3200/2673 Familia
1 32\113 339.82 243/200 Houborizic
1 34\113 360.06 16/13 Phicordial
1 37\113 392.92 2744/2187 Emmthird
1 47\113 499.12 4/3 Gracecordial
1 56\113 594.69 55/39 Gaster