13/12

From Xenharmonic Wiki
Jump to navigation Jump to search
Interval information
Ratio 13/12
Factorization 2-2 × 3-1 × 13
Monzo [-2 -1 0 0 0 1
Size in cents 138.5727¢
Name (lesser) tridecimal neutral second
Color name 3o2, tho 2nd
FJS name [math]\text{m2}^{13}[/math]
Special properties superparticular,
reduced
Tenney height (log2 nd) 7.2854
Weil height (log2 max(n, d)) 7.40088
Wilson height (sopfr(nd)) 20
Harmonic entropy
(Shannon, [math]\sqrt{nd}[/math])
~4.25344 bits

[sound info]
open this interval in xen-calc

In 13-limit just intonation, 13/12 is the (lesser) tridecimal neutral second of about 138.6¢. It is a superparticular interval, as it is found in the harmonic series between the 13th and the 12th harmonics (between 13/8 and 3/2 in the octave). It is flat of the 11-limit lesser neutral second of 12/11 by 144/143 (about 12.1¢), and sharp of the 13-limit large semitone of 14/13 by 169/168 (about 10.3¢).

The neutral second in 17edo is about 141.2¢, about 2.6¢ sharp of 13/12. Thus, if 10\17 (ten degrees of 17edo) is taken to approximate 3/2 and 12\17 taken to approximate 13/8, you can generate a 13-limit harmonic triad that approximates an 8:12:13 chord with a good 13/12.

It is approximated to within about 0.11 cents by the 3-step interval of 26edo.

See also