Amity family
- This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.
The amity family of temperaments tempers out the amity comma (monzo: [9 -13 15⟩, ratio: 1600000/1594323).
Amity
The generator for the amity temperament is the acute minor third, which means the 6/5 just minor third raised by a syntonic comma comma to 243/200, and from this it derives its name. If you are looking for a different kind of neutral third, this could be the temperament for you. Its ploidacot is gamma-pentacot. It is a member of the syntonic–chromatic equivalence continuum with n = 5, so it equates an apotome with a stack of five syntonic commas. It is also in the schismic–Mercator equivalence continuum with n = 5, so unless 53edo is used as a tuning, the schisma is always observed.
Amity is a genuine microtemperament in the 5-limit, with 58\205 being a possible tuning. Another good choice is (64/5)1/13, which gives a pure classical major third. Mos scales of 11, 18, 25, 32, 39, 46 or 53 notes are available.
Subgroup: 2.3.5
Comma list: 1600000/1594323
Mapping: [⟨1 3 6], ⟨0 -5 -13]]
- mapping generators: ~2, ~243/200
Optimal ET sequence: 7, 32c, 39, 46, 53, 152, 205, 258, 1085, 1343, 1601, 1859b, 2117bc
Badness: 0.021960
Overview to extensions
The second comma to extend the 5-limit amity include 4375/4374 for septimal amity, 225/224 for houborizic, 65625/65536 for paramity, 126/125 for accord, 245/243 for bamity, 2430/2401 for hamity, 1029/1024 for gamity, 10976/10935 for chromat, 703125/702464 for trinity, 2401/2400 for amicable, 2100875/2097152 for calamity, 420175/419904 for witcher, and 16875/16807 for familia.
Temperaments discussed elsewhere include:
- Chromat → Hemimage temperaments #Chromat (+10976/10935)
- Witcher → Wizmic microtemperaments #Witcher (+420175/419904)
The rest are considered below.
Septimal amity
Septimal amity can be described as the 46 & 53 temperament, which tempers out 4375/4374 and 5120/5103 in the 7-limit. 99edo is a good tuning, with generator 28\99.
Subgroup: 2.3.5.7
Comma list: 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2], ⟨0 -5 -13 17]]
Optimal tunings:
- CTE: ~2 = 1\1, ~128/105 = 339.446
- POTE: ~2 = 1\1, ~128/105 = 339.432
Optimal ET sequence: 7, 32cd, 39, 46, 53, 99, 152, 251, 905bcdd
Badness: 0.023649
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 4375/4374, 5120/5103
Mapping: [⟨1 3 6 -2 21], ⟨0 -5 -13 17 -62]]
Optimal tunings:
- CTE: ~2 = 1\1, ~128/105 = 339.485
- POTE: ~2 = 1\1, ~128/105 = 339.464
Optimal ET sequence: 46e, 53, 99e, 152, 357d, 509dd, 661dd
Badness: 0.031506
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 540/539, 625/624, 729/728
Mapping: [⟨1 3 6 -2 21 17], ⟨0 -5 -13 17 -62 -47]]
Optimal tunings:
- CTE: ~2 = 1\1, ~128/105 = 339.508
- POTE: ~2 = 1\1, ~128/105 = 339.481
Optimal ET sequence: 46ef, 53, 99ef, 152f, 205
Badness: 0.028008
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 256/255, 352/351, 375/374, 540/539, 729/728
Mapping: [⟨1 3 6 -2 21 17 -1], ⟨0 -5 -13 17 -62 -47 18]]
Optimal tuning (CTE): ~2 = 1\1, ~17/14 = 339.496
Optimal ET sequence: 46ef, 53, 99ef, 152fg, 205gg
Badness: 0.026201
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 256/255, 324/323, 352/351, 375/374, 400/399, 456/455
Mapping: [⟨1 3 6 -2 21 17 -1 15], ⟨0 -5 -13 17 -62 -47 18 -38]]
Optimal tuning (CTE): ~2 = 1\1, ~17/14 = 339.501
Optimal ET sequence: 46efh, 53, 99ef, 152fg, 205gg
Badness: 0.018782
Hitchcock
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 2200/2187
Mapping: [⟨1 3 6 -2 6], ⟨0 -5 -13 17 -9]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.390
- POTE: ~2 = 1\1, ~11/9 = 339.390
Optimal ET sequence: 7, 25cdde, 32cd, 39, 46, 53, 99
Badness: 0.035187
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 169/168, 176/175, 325/324
Mapping: [⟨1 3 6 -2 6 2], ⟨0 -5 -13 17 -9 6]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.411
- POTE: ~2 = 1\1, ~11/9 = 339.419
Optimal ET sequence: 7, 25cddef, 32cd, 39, 46, 53, 99
Badness: 0.022448
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 154/153, 169/168, 176/175, 273/272
Mapping: [⟨1 3 6 -2 6 2 -1], ⟨0 -5 -13 17 -9 6 18]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.366
- POTE: ~2 = 1\1, ~11/9 = 339.366
Optimal ET sequence: 7, 25cddefgg, 32cdg, 39, 46, 99
Badness: 0.019395
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 154/153, 169/168, 171/170, 176/175, 190/189
Mapping: [⟨1 3 6 -2 6 2 -1 0], ⟨0 -5 -13 17 -9 6 18 15]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.415
- POTE: ~2 = 1\1, ~11/9 = 339.407
Optimal ET sequence: 7, 25cddefgghh, 32cdgh, 39h, 46, 53, 99h
Badness: 0.017513
Catamite
The catamite temperament (46 & 99ef) tempers out 441/440 (werckisma) and 896/891 (pentacircle) in the 11-limit; 196/195, 352/351 and 364/363 in the 13-limit. The word "catamite" itself is a term for male homosexual, but also a play on the words "cata-" (down) and "amity."
Subgroup: 2.3.5.7.11
Comma list: 441/440, 896/891, 4375/4374
Mapping: [⟨1 3 6 -2 -7], ⟨0 -5 -13 17 37]]
Optimal tunings:
- CTE: ~2 = 1\1, ~128/105 = 339.314
- POTE: ~2 = 1\1, ~128/105 = 339.340
Optimal ET sequence: 46, 99e, 145
Badness: 0.040976
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 196/195, 352/351, 364/363, 4375/4374
Mapping: [⟨1 3 6 -2 -7 -11], ⟨0 -5 -13 17 37 52]]
Optimal tunings:
- CTE: ~2 = 1\1, ~128/105 = 339.277
- POTE: ~2 = 1\1, ~128/105 = 339.313
Optimal ET sequence: 46, 99ef, 145, 191c, 336cef, 527bccef
Badness: 0.034215
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 196/195, 256/255, 352/351, 364/363, 1156/1155
Mapping: [⟨1 3 6 -2 -7 -11 -1], ⟨0 -5 -13 17 37 52 18]]
Optimal tunings:
- CTE: ~2 = 1\1, ~17/14 = 339.272
- POTE: ~2 = 1\1, ~17/14 = 339.313
Optimal ET sequence: 46, 99ef, 145, 191c
Badness: 0.021193
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 196/195, 256/255, 343/342, 352/351, 364/363, 476/475
Mapping: [⟨1 3 6 -2 -7 -11 -1 -13], ⟨0 -5 -13 17 37 52 18 61]]
Optimal tunings:
- CTE: ~2 = 1\1, ~17/14 = 339.282
- POTE: ~2 = 1\1, ~17/14 = 339.325
Optimal ET sequence: 46, 99ef, 145, 191c, 336cefg
Badness: 0.018864
Hemiamity
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4375/4374, 5120/5103
Mapping: [⟨2 1 -1 13 13], ⟨0 5 13 -17 -14]]
- mapping generators: ~99/70, ~64/55
Optimal tunings:
- CTE: ~99/70 = 1\2, ~64/55 = 260.566
- POTE: ~99/70 = 1\2, ~64/55 = 260.561
Optimal ET sequence: 14cde, 32cde, 46, 106, 152, 350
Badness: 0.031307
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 352/351, 847/845, 1716/1715, 3025/3024
Mapping: [⟨2 1 -1 13 13 20], ⟨0 5 13 -17 -14 -29]]
Optimal tunings:
- CTE: ~99/70 = 1\2, ~64/55 = 260.607
- POTE: ~99/70 = 1\2, ~64/55 = 260.583
Optimal ET sequence: 46, 106f, 152f, 198
Badness: 0.025784
Accord
Subgroup: 2.3.5.7
Comma list: 126/125, 100352/98415
Mapping: [⟨1 3 6 11], ⟨0 -5 -13 -29]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.154
- POTE: ~2 = 1\1, ~243/200 = 338.993
Optimal ET sequence: 7d, 25cddd, 32cdd, 39d, 46
Badness: 0.095612
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 126/125, 896/891
Mapping: [⟨1 3 6 11 6], ⟨0 -5 -13 -29 -9]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.136
- POTE: ~2 = 1\1, ~11/9 = 339.047
Optimal ET sequence: 7d, 25cddde, 32cdd, 39d, 46
Badness: 0.042468
Houborizic
The houborizic temperament (53 & 60) tempers out the marvel comma, 225/224. It is so named because it is closely related to the houboriz tuning (generator: 339.774971 cents).
Subgroup: 2.3.5.7
Comma list: 225/224, 1250000/1240029
Mapping: [⟨1 3 6 13], ⟨0 -5 -13 -36]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.711
- POTE: ~2 = 1\1, ~243/200 = 339.763
Optimal ET sequence: 7d, 32cdddd, 39ddd, 46d, 53, 166, 219c, 272c
Badness: 0.066638
11-limit
Subgroup: 2.3.5.7.11
Comma list: 225/224, 385/384, 1250000/1240029
Mapping: [⟨1 3 6 13 -9], ⟨0 -5 -13 -36 44]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.751
- POTE: ~2 = 1\1, ~243/200 = 339.763
Optimal ET sequence: 53, 113, 166, 551ccee
Badness: 0.067891
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 225/224, 325/324, 385/384, 2200/2197
Mapping: [⟨1 3 6 13 -9 2], ⟨0 -5 -13 -36 44 6]]
Optimal tunings:
- CTE: ~2 = 1\1, ~39/32 = 339.754
- POTE: ~2 = 1\1, ~39/32 = 339.764
Optimal ET sequence: 53, 113, 166
Badness: 0.032996
Houbor
Subgroup: 2.3.5.7.11
Comma list: 121/120, 225/224, 2200/2187
Mapping: [⟨1 3 6 13 6], ⟨0 -5 -13 -36 -9]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.680
- POTE: ~2 = 1\1, ~11/9 = 339.814
Optimal ET sequence: 7d, 32cdddd, 39ddd, 46d, 53
Badness: 0.045232
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 225/224, 275/273, 325/324
Mapping: [⟨1 3 6 13 6 2], ⟨0 -5 -13 -36 -9 6]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11/9 = 339.685
- POTE: ~2 = 1\1, ~11/9 = 339.784
Optimal ET sequence: 7d, 32cdddd, 39ddd, 46d, 53
Badness: 0.031331
Paramity
The paramity temperament (53 & 311) tempers out the horwell comma (65625/65536) and garischisma (33554432/33480783).
Subgroup: 2.3.5.7
Comma list: 65625/65536, 1600000/1594323
Mapping: [⟨1 3 6 -17], ⟨0 -5 -13 70]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.554
- POTE: ~2 = 1\1, ~243/200 = 339.553
Optimal ET sequence: 53, 205d, 258, 311, 675, 986
Badness: 0.113655
11-limit
Subgroup: 2.3.5.7.11
Comma list: 6250/6237, 19712/19683, 41503/41472
Mapping: [⟨1 3 6 -17 36], ⟨0 -5 -13 70 -115]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.554
- POTE: ~2 = 1\1, ~243/200 = 339.554
Optimal ET sequence: 53, 205de, 258, 311, 675, 986
Badness: 0.064853
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 2080/2079, 2200/2197, 19712/19683
Mapping: [⟨1 3 6 -17 36 17], ⟨0 -5 -13 70 -115 -47]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.554
- POTE: ~2 = 1\1, ~243/200 = 339.554
Optimal ET sequence: 53, 205de, 258, 311, 675, 986, 1661cf
Badness: 0.030347
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 625/624, 1225/1224, 2080/2079, 2200/2197, 2431/2430
Mapping: [⟨1 3 6 -17 36 17 -31], ⟨0 -5 -13 70 -115 -47 124]]
Optimal tunings:
- CTE: ~2 = 1\1, ~243/200 = 339.555
- POTE: ~2 = 1\1, ~243/200 = 339.555
Optimal ET sequence: 53, 205deg, 258g, 311, 675, 1661cf, 2336bccf, 3011bccf
Badness: 0.024118
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 625/624, 1225/1224, 1540/1539, 1729/1728, 2080/2079, 2200/2197
Mapping: [⟨1 3 6 -17 36 17 -31 15], ⟨0 -5 -13 70 -115 -47 124 -38]]
Optimal tunings:
- CTE: ~2 = 1\1, ~208/171 = 339.555
- POTE: ~2 = 1\1, ~208/171 = 339.555
Optimal ET sequence: 53, 205deg, 258g, 311, 675, 986, 1661cfh
Badness: 0.017420
Bamity
Bamity has a period of half octave and tempers out the sensamagic comma, 245/243. The name bamity is a contraction of bi- and amity.
Subgroup: 2.3.5.7
Comma list: 245/243, 64827/64000
Mapping: [⟨2 1 -1 3], ⟨0 5 13 6]]
- mapping generators: ~343/240, ~7/6
Optimal tunings:
- CTE: ~343/240 = 1\2, ~7/6 = 260.563
- POTE: ~343/240 = 1\2, ~7/6 = 260.402
Optimal ET sequence: 14c, 32c, 46, 106d, 152d
Badness: 0.083601
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3], ⟨0 5 13 6 9]]
Optimal tunings:
- CTE: ~99/70 = 1\2, ~7/6 = 260.653
- POTE: ~99/70 = 1\2, ~7/6 = 260.393
Optimal ET sequence: 14c, 32c, 46, 152de, 198, 244dee
Badness: 0.035504
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 121/120, 245/243, 441/440
Mapping: [⟨2 1 -1 3 3 0], ⟨0 5 13 6 9 17]]
Optimal tunings:
- CTE: ~55/39 = 1\2, ~7/6 = 260.811
- POTE: ~55/39 = 1\2, ~7/6 = 260.618
Optimal ET sequence: 14cf, 32cf, 46
Badness: 0.030885
Hamity
Hamity has a generator of about 430 cents which represents 9/7. It is also generated by half of acute minor "tenth" (acute minor third of 243/200 plus an octave), and its name is a contraction of half and amity.
Subgroup: 2.3.5.7
Comma list: 2430/2401, 4000/3969
Mapping: [⟨1 8 19 15], ⟨0 -10 -26 -19]]
- mapping generators: ~2, ~14/9
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 430.168
- POTE: ~2 = 1\1, ~9/7 = 430.219
Optimal ET sequence: 14c, 39d, 53
Badness: 0.073956
11-limit
Subgroup: 2.3.5.7.11
Comma list: 99/98, 121/120, 2200/2187
Mapping: [⟨1 8 19 15 15], ⟨0 -10 -26 -19 -18]]
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 430.220
- POTE: ~2 = 1\1, ~9/7 = 430.192
Optimal ET sequence: 14c, 39d, 53
Badness: 0.042947
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 99/98, 121/120, 275/273, 572/567
Mapping: [⟨1 8 19 15 15 30], ⟨0 -10 -26 -19 -18 -41]]
Optimal tunings:
- CTE: ~2 = 1\1, ~9/7 = 430.233
- POTE: ~2 = 1\1, ~9/7 = 430.216
Optimal ET sequence: 14cf, 39df, 53
Badness: 0.029753
Gamity
The gamity temperament (46 & 113) tempers out the gamelisma, 1029/1024. It splits the interval of grave major sixth (~400/243, an octave minus acute minor third) in three.
Subgroup: 2.3.5.7
Comma list: 1029/1024, 1071875/1062882
Mapping: [⟨1 13 32 -1], ⟨0 -15 -39 5]]
- mapping generators: ~2, ~320/189
Optimal tunings:
- CTE: ~2 = 1\1, ~189/160 = 286.816
- POTE: ~2 = 1\1, ~189/160 = 286.787
Optimal ET sequence: 46, 113, 159, 205d, 364d
Badness: 0.125733
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 1071875/1062882
Mapping: [⟨1 13 32 -1 -11], ⟨0 -15 -39 5 19]]
Optimal tunings:
- CTE: ~2 = 1\1, ~33/28 = 286.813
- POTE: ~2 = 1\1, ~33/28 = 286.797
Optimal ET sequence: 46, 113, 159, 205d, 364d
Badness: 0.051111
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 364/363, 385/384, 10985/10976
Mapping: [⟨1 13 32 -1 -11 -10], ⟨0 -15 -39 5 19 18]]
Optimal tunings:
- CTE: ~2 = 1\1, ~13/11 = 286.803
- POTE: ~2 = 1\1, ~13/11 = 286.789
Optimal ET sequence: 46, 113, 159, 364df, 523ddff
Badness: 0.030297
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 273/272, 325/324, 364/363, 385/384, 3773/3757
Mapping: [⟨1 13 32 -1 -11 -10 -2], ⟨0 -15 -39 5 19 18 8]]
Optimal tunings:
- CTE: ~2 = 1\1, ~13/11 = 286.804
- POTE: ~2 = 1\1, ~13/11 = 286.795
Optimal ET sequence: 46, 113, 159, 364df, 523ddff
Badness: 0.022036
Trinity
The trinity temperament (152 & 159) tempers out the meter, 703125/702464. It splits the acute minor tenth (~243/100, an octave plus acute minor third) in three. It was so named for the following reason – 133\311 (133 steps of 311edo) is a possible generator, which is placed around 3\7 (1.1¢ flat), three of which makes acute minor third of ~243/200 with octave reduction.
Subgroup: 2.3.5.7
Comma list: 703125/702464, 1600000/1594323
Mapping: [⟨1 8 19 46], ⟨0 -15 -39 -101]]
Optimal tunings:
- CTE: ~2 = 1\1, ~168/125 = 513.180
- POTE: ~2 = 1\1, ~168/125 = 513.178
Optimal ET sequence: 7d, …, 145d, 152, 311, 774, 1085
Badness: 0.119453
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 19712/19683
Mapping: [⟨1 8 19 46 18], ⟨0 -15 -39 -101 -34]]
Optimal tunings:
- CTE: ~2 = 1\1, ~121/90 = 513.181
- POTE: ~2 = 1\1, ~121/90 = 513.177
Optimal ET sequence: 7d, …, 145d, 152, 311, 774, 1085e, 1396e
Badness: 0.031296
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1575/1573, 2080/2079, 13720/13689
Mapping: [⟨1 8 19 46 18 64], ⟨0 -15 -39 -101 -34 -141]]
Optimal tunings:
- CTE: ~2 = 1\1, ~35/26 = 513.184
- POTE: ~2 = 1\1, ~35/26 = 513.182
Optimal ET sequence: 152f, 159, 311
Badness: 0.026418
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 595/594, 625/624, 833/832, 1575/1573, 8624/8619
Mapping: [⟨1 8 19 46 18 64 -22], ⟨0 -15 -39 -101 -34 -141 61]]
Optimal tunings:
- CTE: ~2 = 1\1, ~35/26 = 513.185
- POTE: ~2 = 1\1, ~35/26 = 513.186
Optimal ET sequence: 152f, 159, 311, 1714cdeg, 2025cdefgg, 2336bccdefgg
Badness: 0.025588
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 595/594, 625/624, 833/832, 969/968, 1216/1215, 1575/1573
Mapping: [⟨1 8 19 46 18 64 -22 53], ⟨0 -15 -39 -101 -34 -141 61 -114]]
Optimal tunings:
- CTE: ~2 = 1\1, ~35/26 = 513.184
- POTE: ~2 = 1\1, ~35/26 = 513.185
Optimal ET sequence: 152f, 159, 311
Badness: 0.018412
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 595/594, 625/624, 760/759, 833/832, 875/874, 969/968, 1105/1104
Mapping: [⟨1 8 19 46 18 64 -22 53 49], ⟨0 -15 -39 -101 -34 -141 61 -114 -104]]
Optimal tunings:
- CTE: ~2 = 1\1, ~35/26 = 513.184
- POTE: ~2 = 1\1, ~35/26 = 513.185
Optimal ET sequence: 152f, 159, 311, 1714cdeghi, 2025cdefgghhi, 2336bccdefgghhi
Badness: 0.014343
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 595/594, 625/624, 760/759, 784/783, 833/832, 875/874, 969/968, 1045/1044
Mapping: [⟨1 8 19 46 18 64 -22 53 49 72], ⟨0 -15 -39 -101 -34 -141 61 -114 -104 -157]]
Optimal tunings:
- CTE: ~2 = 1\1, ~35/26 = 513.185
- POTE: ~2 = 1\1, ~35/26 = 513.186
Optimal ET sequence: 152fj, 159, 311, 1403cdgh, 1714cdeghi, 2025cdefgghhij, 2336bccdefgghhij
Badness: 0.012038
Amicable
The amicable temperament (99 & 311) tempers out the amity comma and the canousma in addition to the breedsma, and is closely associated with the canou temperament.
While it extends well into 2.3.5.7.13/11, there are multiple reasonable places for the prime 11 and 13 in the interval chain. Amical (311 & 410) does this with no compromise of accuracy, but is enormously complex. Amorous (212 & 311) has the new primes placed on the same side of the interval chain so blends smarter with the other harmonics. Pseudoamical (99 & 113) and pseudoamorous (14cf & 99ef) are the corresponding low-complexity interpretations. Floral (198 & 212) shares the semioctave period and the ~21/20 generator with harry, but in a complementary style, including a characteristic flat 11. Finally, humorous (198 & 311) is one of the best extensions out there and it splits the generator in two.
Subgroup: 2.3.5.7
Comma list: 2401/2400, 1600000/1594323
Mapping: [⟨1 3 6 5], ⟨0 -20 -52 -31]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.8831
- POTE: ~2 = 1\1, ~21/20 = 84.880
Optimal ET sequence: 14c, …, 85c, 99, 212, 311, 721, 1032, 1753b
Badness: 0.045473
Amical
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 131072/130977, 1600000/1594323
Mapping: [⟨1 3 6 5 -8], ⟨0 -20 -52 -31 162]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.8843
- POTE: ~2 = 1\1, ~21/20 = 84.8843
Optimal ET sequence: 99, 212e, 311, 721, 1032, 1343, 2375bc
Badness: 0.100668
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2401/2400, 4096/4095, 741125/739206
Mapping: [⟨1 3 6 5 -8 -5], ⟨0 -20 -52 -31 162 123]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.8837
- POTE: ~2 = 1\1, ~21/20 = 84.8838
Optimal ET sequence: 99, 212ef, 311, 721, 1032
Badness: 0.049893
Amorous
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 6250/6237, 19712/19683
Mapping: [⟨1 3 6 5 14], ⟨0 -20 -52 -31 -149]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.8883
- POTE: ~2 = 1\1, ~21/20 = 84.8896
Optimal ET sequence: 99e, 212, 311, 2389bccd, 2700bccde, 3011bccde, 3322bccdde
Badness: 0.048924
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 2080/2079, 2401/2400, 10648/10647
Mapping: [⟨1 3 6 5 14 17], ⟨0 -20 -52 -31 -149 -188]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.8895
- POTE: ~2 = 1\1, ~21/20 = 84.8910
Optimal ET sequence: 99ef, 212, 311, 1145c, 1456cd, 1767cd
Badness: 0.034681
Pseudoamical
Subgroup: 2.3.5.7.11
Comma list: 385/384, 1375/1372, 1600000/1594323
Mapping: [⟨1 3 6 5 -1], ⟨0 -20 -52 -31 63]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.9005
- POTE: ~2 = 1\1, ~21/20 = 84.9091
Optimal ET sequence: 14ce, …, 85cee, 99, 212
Badness: 0.085837
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 325/324, 385/384, 1375/1372, 19773/19712
Mapping: [⟨1 3 6 5 -1 2], ⟨0 -20 -52 -31 63 24]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.9049
- POTE: ~2 = 1\1, ~21/20 = 84.9127
Optimal ET sequence: 14ce, …, 85ceef, 99, 113, 212
Badness: 0.047025
Pseudoamorous
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 980000/970299
Mapping: [⟨1 3 6 5 7], ⟨0 -20 -52 -31 -50]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.9022
- POTE: ~2 = 1\1, ~21/20 = 84.8917
Optimal ET sequence: 14c, …, 85ce, 99e, 113, 212e
Badness: 0.056583
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 243/242, 364/363, 441/440, 1875/1859
Mapping: [⟨1 3 6 5 7 10], ⟨0 -20 -52 -31 -50 -89]]
Optimal tunings:
- CTE: ~2 = 1\1, ~21/20 = 84.9153
- POTE: ~2 = 1\1, ~21/20 = 84.9164
Optimal ET sequence: 14cf, …, 85ceff, 99ef, 113, 212ef, 325ce, 537cdeef
Badness: 0.042826
Floral
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 9801/9800, 14641/14580
Mapping: [⟨2 6 12 10 13], ⟨0 -20 -52 -31 -43]]
Optimal tunings:
- CTE: ~99/70 = 1\2, ~21/20 = 84.8781
- POTE: ~99/70 = 1\2, ~21/20 = 84.8788
Optimal ET sequence: 14c, …, 170bccde, 184c, 198, 212, 410
Badness: 0.065110
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 676/675, 1001/1000, 1716/1715, 14641/14580
Mapping: [⟨2 6 12 10 13 19], ⟨0 -20 -52 -31 -43 -82]]
Optimal tunings:
- CTE: ~99/70 = 1\2, ~21/20 = 84.8759
- POTE: ~99/70 = 1\2, ~21/20 = 84.8750
Optimal ET sequence: 14c, …, 184cff, 198, 410
Badness: 0.037013
Humorous
Subgroup: 2.3.5.7.11
Comma list: 2401/2400, 3025/3024, 1600000/1594323
Mapping: [⟨1 3 6 5 3], ⟨0 -40 -104 -62 13]]
Optimal tunings:
- CTE: ~2 = 1\1, ~4096/3993 = 42.4414
- POTE: ~2 = 1\1, ~4096/3993 = 42.4391
Optimal ET sequence: 85c, 113, 198, 311, 1131, 1442, 1753be
Badness: 0.058249
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 2200/2197, 2401/2400, 3025/3024
Mapping: [⟨1 3 6 5 3 6], ⟨0 -40 -104 -62 13 -65]]
Optimal tunings:
- CTE: ~2 = 1\1, ~40/39 = 42.4425
- POTE: ~2 = 1\1, ~40/39 = 42.4391
Optimal ET sequence: 85c, 113, 198, 311, 1753beff, 2064beff, 2375bceff
Badness: 0.028267
Calamity
The calamity temperament (46 & 311) tempers out the rainy comma, 2100875/2097152, splitting the interval of two octaves plus an acute minor third into five.
Subgroup: 2.3.5.7
Comma list: 1600000/1594323, 2100875/2097152
Mapping: [⟨1 13 32 -15], ⟨0 -25 -65 39]]
Optimal tuning (CTE): ~2 = 1\1, ~48/35 = 547.909
Optimal ET sequence: 46, 219c, 265, 311
Badness: 0.198130
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 12005/11979, 131072/130977
Mapping: [⟨1 13 32 -15 -18], ⟨0 -25 -65 39 47]]
Optimal tuning (CTE): ~2 = 1\1, ~48/35 = 547.908
Optimal ET sequence: 46, 219c, 265, 311, 979, 1290
Badness: 0.060408
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 2080/2079, 3025/3024, 4096/4095, 12005/11979
Mapping: [⟨1 13 32 -15 -18 -31], ⟨0 -25 -65 39 47 76]]
Optimal tuning (CTE): ~2 = 1\1, ~48/35 = 547.907
Optimal ET sequence: 46, 265, 311, 668, 979, 1290
Badness: 0.033617
Familia
The familia temperament (113 & 152) tempers out the mirkwai comma, 16875/16807. It splits the interval of acute minor tenth (~243/100) in five.
Subgroup: 2.3.5.7
Comma list: 16875/16807, 1600000/1594323
Mapping: [⟨1 8 19 20], ⟨0 -25 -65 -67]]
Optimal tunings:
- CTE: ~2 = 1\1, ~11907/10000 = 307.915
- POTE: ~2 = 1\1, ~11907/10000 = 307.941
Optimal ET sequence: 39d, 74cd, 113, 152, 265, 417, 1516ccdd, 1933ccdd
Badness: 0.144551
11-limit
Subgroup: 2.3.5.7.11
Comma list: 540/539, 1375/1372, 1600000/1594323
Mapping: [⟨1 8 19 20 5], ⟨0 -25 -65 -67 -6]]
Optimal tunings:
- CTE: ~2 = 1\1, ~3200/2673 = 307.915
- POTE: ~2 = 1\1, ~3200/2673 = 307.906
Optimal ET sequence: 39d, 74cd, 113, 152, 265, 417, 1099cdee
Badness: 0.051740
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 540/539, 729/728, 1375/1372, 2205/2197
Mapping: [⟨1 8 19 20 5 25], ⟨0 -25 -65 -67 -6 -83]]
Optimal tunings:
- CTE: ~2 = 1\1, ~143/120 = 307.922
- POTE: ~2 = 1\1, ~143/120 = 307.913
Optimal ET sequence: 39df, 74cdf, 113, 152f, 265
Badness: 0.038473