336edo
Jump to navigation
Jump to search
Prime factorization
24 × 3 × 7
Step size
3.57143¢
Fifth
197\336 (703.571¢)
Semitones (A1:m2)
35:23 (125¢ : 82.14¢)
Dual sharp fifth
197\336 (703.571¢)
Dual flat fifth
196\336 (700¢) (→7\12)
Dual major 2nd
57\336 (203.571¢) (→19\112)
Consistency limit
3
Distinct consistency limit
3
← 335edo | 336edo | 337edo → |
336 equal divisions of the octave (336edo), or 336-tone equal temperament (336tet), 336 equal temperament (336et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 336 equal parts of about 3.57 ¢ each.
Theory
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +1.62 | -0.60 | -0.97 | -0.34 | -1.32 | -1.24 | +1.02 | -1.38 | -1.08 | +0.65 | +0.30 |
relative (%) | +45 | -17 | -27 | -9 | -37 | -35 | +28 | -39 | -30 | +18 | +8 | |
Steps (reduced) |
533 (197) |
780 (108) |
943 (271) |
1065 (57) |
1162 (154) |
1243 (235) |
1313 (305) |
1373 (29) |
1427 (83) |
1476 (132) |
1520 (176) |
336edo offers a series of no-three temperaments, with the regular one having only a 0.11 cent error.