336edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 335edo336edo337edo →
Prime factorization 24 × 3 × 7
Step size 3.57143¢
Fifth 197\336 (703.571¢)
Semitones (A1:m2) 35:23 (125¢ : 82.14¢)
Sharp fifth 197\336 (703.571¢)
Flat fifth 196\336 (700¢) (→7\12)
Major 2nd 57\336 (203.571¢) (→19\112)
Consistency limit 3
Distinct consistency limit 3

336 equal divisions of the octave (336edo), or 336-tone equal temperament (336tet), 336 equal temperament (336et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 336 equal parts of about 3.57 ¢ each.

Theory

Approximation of odd harmonics in 336edo
Harmonic 3 5 7 9 11 13 15 17 19 21
Error absolute (¢) +1.62 -0.60 -0.97 -0.34 -1.32 -1.24 +1.02 -1.38 -1.08 +0.65
relative (%) +45 -17 -27 -9 -37 -35 +28 -39 -30 +18
Steps
(reduced)
533
(197)
780
(108)
943
(271)
1065
(57)
1162
(154)
1243
(235)
1313
(305)
1373
(29)
1427
(83)
1476
(132)

336edo offers a series of no-three temperaments, with the regular one having only a 0.11 cent error.