335edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 334edo335edo336edo →
Prime factorization 5 × 67
Step size 3.58209¢ 
Fifth 196\335 (702.09¢)
Semitones (A1:m2) 32:25 (114.6¢ : 89.55¢)
Consistency limit 5
Distinct consistency limit 5

335 equal divisions of the octave (abbreviated 335edo or 335ed2), also called 335-tone equal temperament (335tet) or 335 equal temperament (335et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 335 equal parts of about 3.58 ¢ each. Each step represents a frequency ratio of 21/335, or the 335th root of 2.

Theory

335edo only is consistent to the 5-odd-limit. The equal temperament tempers out [8 14 -13 (parakleisma) and [39 -29 3 (tricot comma), and is a quite efficient 5-limit system.

The 335d val (335 531 778 941 1159 1240]), which scores the best, tempers out 6144/6125, 16875/16807 and 14348907/14336000 in the 7-limit; 540/539, 1375/1372, 3025/3024, 5632/5625 in the 11-limit; and 729/728, 2080/2079, 2200/2197, and 6656/6655 in the 13-limit. It supports grendel.

The patent val 335 531 778 940] tempers out the 3136/3125 and 4375/4374 and in the 7-limit, supporting septimal parakleismic. This extension tempers out 441/440, 5632/5625, and 19712/19683 in the 11-limit. The 13-limit version of this, 335 531 778 940 1159 1240], tempers out 847/845, 1001/1000, 1575/1573, 2200/2197, 4096/4095, 6656/6655, and 10648/10647. Another 13-limit extension is 335 531 778 940 1159 1239] (335f), where it adds 364/363 and 2080/2079 to the comma list.

Prime harmonics

Approximation of prime harmonics in 335edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.13 +0.55 -1.66 +0.32 +1.26 -1.07 -0.20 -1.41 -1.52 +1.23
Relative (%) +0.0 +3.8 +15.4 -46.4 +9.0 +35.3 -30.0 -5.6 -39.3 -42.4 +34.4
Steps
(reduced)
335
(0)
531
(196)
778
(108)
940
(270)
1159
(154)
1240
(235)
1369
(29)
1423
(83)
1515
(175)
1627
(287)
1660
(320)

Subsets and supersets

Since 335 factors into 5 × 67, 335edo has 5edo and 67edo as its subsets. 670edo, which doubles it, gives a good correction to the harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [531 -335 [335 531]] -0.0424 0.0424 1.18
2.3.5 [8 14 -13, [47 -15 -10 [335 531 778]] -0.1075 0.0984 2.75

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 88\335 315.22 6/5 Parakleismic (335)
1 108\335 386.87 5/4 Counterwürschmidt
1 158\335 565.97 81920/59049 Trident (335d)
Trillium / pseudotrillium (335)
5 103\335
(31\335)
368.96
(111.04)
99/80
(16/15)
Quintosec

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct