Parakleismic
Parakleismic is the microtemperament tempering out the parakleisma in the 5-limit. This article also assumes the canonical mapping for 7, which means tempering out 3136/3125 and 4375/4374 in the 7-limit.
Parakleismic is much like catakleismic but a good tuning has the generator (6/5) flat, instead of sharp, than the just version. The sixth generator step is half a syntonic comma flat of the harmonic 3. Consequently, the 12th generator step is mapped to 10/9 instead of 9/8, and the 13th generator step is mapped to 4/3 instead of 27/20.
Extensions for harmonic 11 includes undecimal parakleismic, mapping it to +36 steps, paralytic, to -82 steps, parkleismic, to -63 steps, and paradigmic, to +17 steps.
See Ragismic microtemperaments #Parakleismic for technical data.
Interval chain
# | Cents* | Approximate Ratios |
---|---|---|
0 | 0.0 | 1/1 |
1 | 315.2 | 6/5 |
2 | 630.4 | 36/25 |
3 | 945.5 | 140/81 |
4 | 60.7 | 28/27 |
5 | 375.9 | 56/45 |
6 | 691.1 | 112/75 |
7 | 1006.3 | 25/14 |
8 | 121.4 | 15/14 |
9 | 436.6 | 9/7 |
10 | 751.8 | 54/35 |
11 | 1067.0 | 50/27 |
12 | 182.2 | 10/9 |
13 | 497.4 | 4/3 |
14 | 812.5 | 8/5 |
15 | 1127.7 | 48/25 |
16 | 242.9 | 144/125 |
17 | 558.1 | 112/81 |
18 | 873.7 | 224/135 |
19 | 1188.4 | 125/63, 448/225, 486/245 |
20 | 303.6 | 25/21 |
21 | 618.8 | 10/7 |
22 | 934.0 | 12/7 |
23 | 49.2 | 36/35 |
* in 7-limit POTE tuning
Tuning spectrum
EDO generator |
eigenmonzo (unchanged-interval) |
generator (¢) |
comments |
---|---|---|---|
16\61 | 314.754 | Lower bound of 9-odd-limit diamond monotone | |
15/14 | 314.930 | ||
21\80 | 315.000 | ||
9/7 | 315.009 | ||
7/5 | 315.118 | ||
7/6 | 315.142 | ||
26\99 | 315.152 | ||
21/20 | 315.163 | ||
49/48 | 315.163 | ||
36/35 | 315.164 | ||
8/7 | 315.176 | 7-odd-limit minimax (error = 1.217¢) | |
80/63 | 315.183 | 9-odd-limit minimax (error = 1.345¢) | |
10/9 | 315.200 | ||
4/3 | 315.234 | ||
16/15 | 315.249 | 5-odd-limit minimax (error = 0.196¢) | |
31\118 | 315.254 | ||
5/4 | 315.263 | ||
25/24 | 315.289 | ||
6/5 | 315.641 | ||
28/27 | 315.740 | ||
5\19 | 315.789 | Upper bound of 9-odd-limit diamond monotone |