337edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 336edo 337edo 338edo →
Prime factorization 337 (prime)
Step size 3.56083¢ 
Fifth 197\337 (701.484¢)
Semitones (A1:m2) 31:26 (110.4¢ : 92.58¢)
Consistency limit 9
Distinct consistency limit 9

337 equal divisions of the octave (abbreviated 337edo or 337ed2), also called 337-tone equal temperament (337tet) or 337 equal temperament (337et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 337 equal parts of about 3.56 ¢ each. Each step represents a frequency ratio of 21/337, or the 337th root of 2.

Theory

337edo is consistent to the 9-odd-limit, but the error of harmonic 5 is quite large. If the harmonic is used at all, it tends very flat. The equal temperament tempers out 16875/16807, 420175/419904, and 5250987/5242880 in the 7-limit. It supports tokko and sqrtphi.

Odd harmonics

Approximation of odd harmonics in 337edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -0.47 -1.74 -0.28 -0.94 +0.61 -0.17 +1.35 -1.69 +1.60 -0.75 -1.57
Relative (%) -13.2 -49.0 -7.9 -26.5 +17.2 -4.8 +37.8 -47.5 +44.8 -21.1 -44.0
Steps
(reduced)
534
(197)
782
(108)
946
(272)
1068
(57)
1166
(155)
1247
(236)
1317
(306)
1377
(29)
1432
(84)
1480
(132)
1524
(176)

Subsets and supersets

337edo is the 68th prime edo.

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-534 337 [337 534]] 0.1487 0.1487 4.18
2.3.5 15625/15552, [-88 57 -1 [337 534 782]] 0.3495 0.3089 8.67
2.3.5.7 15625/15552, 16875/16807, 7381125/7340032 [337 534 782 946]] 0.2870 0.2886 8.10

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 67\337 238.58 147/128 Tokko
1 89\337 316.91 6/5 Hanson
1 117\337 416.62 14/11 Sqrtphi (337, 11-limit)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Music

Francium