337edo
← 336edo | 337edo | 338edo → |
337 equal divisions of the octave (abbreviated 337edo or 337ed2), also called 337-tone equal temperament (337tet) or 337 equal temperament (337et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 337 equal parts of about 3.56 ¢ each. Each step represents a frequency ratio of 21/337, or the 337th root of 2.
Theory
337edo is consistent to the 9-odd-limit, but the error of harmonic 5 is quite large. If the harmonic is used at all, it tends very flat. The equal temperament tempers out 16875/16807, 420175/419904, and 5250987/5242880 in the 7-limit. It supports tokko and sqrtphi.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.47 | -1.74 | -0.28 | -0.94 | +0.61 | -0.17 | +1.35 | -1.69 | +1.60 | -0.75 | -1.57 |
Relative (%) | -13.2 | -49.0 | -7.9 | -26.5 | +17.2 | -4.8 | +37.8 | -47.5 | +44.8 | -21.1 | -44.0 | |
Steps (reduced) |
534 (197) |
782 (108) |
946 (272) |
1068 (57) |
1166 (155) |
1247 (236) |
1317 (306) |
1377 (29) |
1432 (84) |
1480 (132) |
1524 (176) |
Subsets and supersets
337edo is the 68th prime edo.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-534 337⟩ | [⟨337 534]] | 0.1487 | 0.1487 | 4.18 |
2.3.5 | 15625/15552, [-88 57 -1⟩ | [⟨337 534 782]] | 0.3495 | 0.3089 | 8.67 |
2.3.5.7 | 15625/15552, 16875/16807, 7381125/7340032 | [⟨337 534 782 946]] | 0.2870 | 0.2886 | 8.10 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 67\337 | 238.58 | 147/128 | Tokko |
1 | 89\337 | 316.91 | 6/5 | Hanson |
1 | 117\337 | 416.62 | 14/11 | Sqrtphi (337, 11-limit) |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct