364edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 363edo364edo365edo →
Prime factorization 22 × 7 × 13
Step size 3.2967¢
Fifth 213\364 (702.198¢)
Semitones (A1:m2) 35:27 (115.4¢ : 89.01¢)
Consistency limit 21
Distinct consistency limit 21

364 equal divisions of the octave (abbreviated 364edo or 364ed2), also called 364-tone equal temperament (364tet) or 364 equal temperament (364et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 364 equal parts of about 3.3 ¢ each. Each step represents a frequency ratio of 21/364, or the 364th root of 2.

Theory

364edo is consistent through the 21-odd-limit. The equal temperament tempers out 1600000/1594323 (amity comma) and [-65 0 28 (oquatonic comma) in the 5-limit; 65625/65536 (horwell comma), 390625/388962 (dimcomp comma), and 420175/419904 (wizma) in the 7-limit (supporting fifthplus and oquatonic); 1375/1372, 6250/6237, 19712/19683, and 41503/41472 in the 11-limit (as well as 9801/9800); 625/624, 1716/1715, 2080/2079, 2200/2197, and 14641/14625 in the 13-limit (as well as 4096/4095, 4225/4224, and 10985/10976); 715/714, 1089/1088, 1225/1224, 1275/1274, 2025/2023, and 8624/8619 in the 17-limit (as well as 2431/2430, 4914/4913, and 5832/5831); 1216/1215, 1331/1330, 1540/1539, and 1729/1728 in the 19-limit.

Prime harmonics

Approximation of prime harmonics in 364edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.00 +0.24 -0.60 +0.40 -0.77 +0.13 +0.54 -0.81 +1.40 -1.01 -1.08
relative (%) +0 +7 -18 +12 -23 +4 +16 -25 +42 -31 -33
Steps
(reduced)
364
(0)
577
(213)
845
(117)
1022
(294)
1259
(167)
1347
(255)
1488
(32)
1546
(90)
1647
(191)
1768
(312)
1803
(347)

Subsets and supersets

Since 364 factors into 22 × 7 × 13, 364edo has subset edos 2, 4, 7, 13, 14, 26, 28, 52, 91, 182.

Miscellaneous properties

364edo can act as "pseudo-24024edo" in a sense that it can replicate being a multiple of 11edo, 12edo, 13edo and 14edo. It has 13 and 14 as its divisors, while at the same time supporting the Supermajor[11] scale from 91edo, which is a very precise temperament, and WorldCalendar[12] scale, which mimics 12edo. While it does not exactly replicate 11edo and 12edo, it comes close enough in harmonic parameters these edos are sought after.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [577 -364 [364 577]] -0.0766 0.0766 2.32
2.3.5 1600000/1594323, [-65 0 28 [364 577 845]] +0.0350 0.1698 5.15
2.3.5.7 65625/65536, 390625/388962, 420125/419904 [364 577 845 1022]] -0.0098 0.1662 5.04
2.3.5.7.11 1375/1372, 6250/6237, 19712/19683, 41503/41472 [364 577 845 1022 1259]] +0.0366 0.1753 5.32
2.3.5.7.11.13 625/624, 1375/1372, 2080/2079, 2200/2197, 14641/14625 [364 577 845 1022 1259 1347]] +0.0245 0.1622 4.92
2.3.5.7.11.13.17 625/624, 715/714, 1089/1088, 1225/1224, 2025/2023, 2200/2197 [364 577 845 1022 1259 1347 1488]] +0.0022 0.1599 4.85
2.3.5.7.11.13.17.19 625/624, 715/714, 1089/1088, 1216/1215, 1225/1224, 1331/1330, 1729/1728 [364 577 845 1022 1259 1347 1488 1546]] +0.0257 0.1620 4.91

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 103\364 339.56 243/200 Amity / paramity
1 125\364 412.09 80/63 Witch
1 149\364 491.21 3645/2744 Fifthplus
1 151\364 497.80 4/3 Gary
2 57\364 187.91 49/44 Semiwitch
4 30\364 98.90 18/17 World calendar
13 151\364
(11\364)
497.80
(36.26)
4/3
(?)
Aluminium
26 151\364
(11\364)
497.80
(36.26)
4/3
(?)
Iron
28 151\364
(5\364)
497.80
(16.48)
4/3
(105/104)
Oquatonic
91 151\364
(3\364)
497.80
(3.30)
4/3
(176/175)
Protactinium

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Scales

  • WorldCalendar[12]: 31 30 30 31 30 30 31 30 30 31 30 30