Horwell temperaments
Horwell temperaments temper out the horwell comma, [-16 1 5 1⟩ = 65625/65536.
Temperaments discussed elsewhere are
- Mabila (+49/48) → Mabila family
- Worschmidt (+126/125) → Würschmidt family
- Escaped (+245/243) → Escapade family
- Maquiloid (+686/675) → Maquila family
- Keen (+875/864) → Diaschismic family
- Hemithirds (+1029/1024) → Hemimean clan
- Orwell (+1728/1715) → Semicomma family
- Tertiaseptal (+2401/2400) → Breedsmic temperaments
- Pontiac (+4375/4374) → Schismatic family
- Countercata (+5120/5103) → Kleismic family
- Bisupermajor (+10976/10935) → Hemimage temperaments
- Eris (+16875/16807) → Mirkwai clan
- Narayana (+321489/320000) → Vishnuzmic family
- Paramity (+1600000/1594323) → Amity family
- Kaboom (+4802000/4782969) → Vavoom family
- Soviet ferris wheel (+[-5 -9 -5 11⟩) → 20th-octave temperaments
Mutt
Subgroup: 2.3.5
Comma list: [-44 -3 21⟩
Mapping: [⟨3 5 7], ⟨0 -7 -1]]
- mapping generators: ~98304/78125, ~393216/390625
Optimal tuning (POTE): ~98304/78125 = 1\3, ~5/4 = 385.980 (~393216/390625 = 14.020)
Optimal ET sequence: 84, 87, 171, 771, 942, 1113, 1284, 1455
Badness: 0.162467
7-limit
Subgroup: 2.3.5.7
Comma list: 65625/65536, 250047/250000
Mapping: [⟨3 5 7 8], ⟨0 -7 -1 12]]
Wedgie: ⟨⟨ 21 3 -36 -44 -116 -92 ]]
Optimal tuning (POTE): ~63/50 = 1\3, ~5/4 = 385.964 (~126/125 = 14.036)
Optimal ET sequence: 84, 87, 171
Badness: 0.028406
11-limit
Subgroup: 2.3.5.7.11
Comma list: 441/440, 4375/4356, 16384/16335
Mapping: [⟨3 5 7 8 10], ⟨0 -7 -1 12 11]]
Optimal tuning (POTE): ~44/35 = 1\3, ~5/4 = 386.020 (~126/125 = 13.980)
Optimal ET sequence: 84, 87, 171, 258, 429e
Badness: 0.058344
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 364/363, 441/440, 625/624, 2200/2197
Mapping: [⟨3 5 7 8 10 11], ⟨0 -7 -1 12 11 3]]
Optimal tuning (POTE): ~44/35 = 1\3, ~5/4 = 386.022 (~126/125 = 13.978)
Optimal ET sequence: 84, 87, 171, 258, 429ef
Badness: 0.029089
Fifthplus
Fifthplus (22 & 171) tempers out the sesesix comma, [-74 13 23⟩ in the 5-limit. The name "fifthplus" means using a sharp fifth interval (such as superpyth fifth) as a generator.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 420175/419904
Mapping: [⟨1 11 -3 20], ⟨0 -23 13 -42]]
Wedgie: ⟨⟨ 23 -13 42 -74 2 134 ]]
Optimal tuning (POTE): ~2 = 1\1, ~5488/3645 = 708.774
Optimal ET sequence: 22, 149, 171, 1903c, 2074c, 2245cd, 2416cd, 2587cd, 2758cd, 2929cd, 3100cd, 3271ccd, 3442ccd, 3613ccd
Badness: 0.025840
Emkay
Emkay (87 & 224) tempers out the same 5-limit comma as the emka temperament (37 & 50), but with the horwell (65625/65536) rather than the hemimean (3136/3125) tempered out.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 244140625/243045684
Mapping: [⟨1 14 6 -28], ⟨0 -27 -8 67]]
Wedgie: ⟨⟨ 27 8 -67 -50 -182 -178 ]]
Optimal tuning (POTE): ~2 = 1\1, ~3125/2268 = 551.7745
Optimal ET sequence: 87, 137, 224, 311, 535, 1381c, 1916c
Badness: 0.135696
11-limit
Subgroup: 2.3.5.7.11
Comma list: 3025/3024, 4000/3993, 65625/65536
Mapping: [⟨1 14 6 -28 3], ⟨0 -27 -8 67 1]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.7746
Optimal ET sequence: 87, 137, 224, 311, 535, 1381ce, 1916ce
Badness: 0.035586
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1575/1573, 2080/2079, 2200/2197
Mapping: [⟨1 14 6 -28 3 6], ⟨0 -27 -8 67 1 -5]]
Optimal tuning (POTE): ~2 = 1\1, ~11/8 = 551.7749
Optimal ET sequence: 87, 137, 224, 311, 535, 1916cef, 2451cceff, 2986cceeff
Badness: 0.017853
Kastro
Subgroup: 2.3.5.7
Comma list: 65625/65536, 117649/116640
Mapping: [⟨1 5 1 6], ⟨0 -31 12 -29]]
Optimal tuning (POTE): ~2 = 1\1, ~3375/3136 = 132.1845
Optimal ET sequence: 109, 118, 345d
Badness: 0.183435
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 3388/3375, 12005/11979
Mapping: [⟨1 5 1 6 5], ⟨0 -31 12 -29 -14]]
Optimal tuning (POTE): ~2 = 1\1, ~121/112 = 132.1864
Optimal ET sequence: 109, 118, 345de, 463de, 581dde
Badness: 0.052693
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 364/363, 385/384, 3388/3375
Mapping: [⟨1 5 1 6 5 7], ⟨0 -31 12 -29 -14 -30]]
Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 132.1789
Optimal ET sequence: 109, 118f, 227f
Badness: 0.046695
Oquatonic
The oquatonic has a period of 1/28 octave and tempers out the horwell (65625/65536) and the dimcomp (390625/388962), as well as the hemfiness (4096000/4084101, saquinru-atriyo). In this temperament, major third of 5/4 is mapped into 9\28.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 390625/388962
Mapping: [⟨28 0 65 123], ⟨0 1 0 -1]]
- mapping generators: ~128/125, ~3
Wedgie: ⟨⟨ 28 0 -28 -65 -123 -65 ]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.1137
Optimal ET sequence: 28, 56, 84, 140, 224, 364, 588, 952
Badness: 0.088286
11-limit
Subgroup: 2.3.5.7.11
Comma list: 1375/1372, 6250/6237, 65625/65536
Mapping: [⟨28 0 65 123 230], ⟨0 1 0 -1 -3]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.0186
Optimal ET sequence: 84, 140, 224, 364, 588, 1400cd, 1988cd, 2576ccdd
Badness: 0.047853
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 625/624, 1375/1372, 2080/2079, 2200/2197
Mapping: [⟨28 0 65 123 230 148], ⟨0 1 0 -1 -3 -1]]
Optimal tuning (POTE): ~2 = 1\1, ~3/2 = 702.0288
Optimal ET sequence: 84, 140, 224, 364, 588
Badness: 0.021968
Bezique
Bezique splits the octave into 32 equal parts and reaches 3/2, 8/5 and 11/8 in just one generator with the 64-tone mos. The card game of bezique is played with two packs of 32 cards, hence the name.
Subgroup: 2.3.5.7
Comma list: 65625/65536, 847288609443/843308032000
Mapping: [⟨32 0 125 -113], ⟨0 1 -1 4]]
- mapping generators: ~100352/98415, ~3
Optimal tuning (CTE): ~100352/98415 = 1\32, ~3/2 = 701.610
Optimal ET sequence: 224, 544, 768, 1312
Badness: 0.270
11-limit
Subgroup: 2.3.5.7.11
Comma list: 9801/9800, 46656/46585, 65625/65536
Mapping: [⟨32 0 125 -113 60], ⟨0 1 -1 4 1]]
Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.601
Optimal ET sequence: 224, 544, 768
Badness: 0.0680
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 729/728, 1575/1573, 4225/4224, 6656/6655
Mapping: [⟨32 0 125 -113 60 17], ⟨0 1 -1 4 1 2]]
Optimal tuning (CTE): ~45/44 = 1\32, ~3/2 = 701.593
Optimal ET sequence: 224, 544, 768, 1312
Badness: 0.0298