137edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 136edo137edo138edo →
Prime factorization 137 (prime)
Step size 8.75912¢ 
Fifth 80\137 (700.73¢)
Semitones (A1:m2) 12:11 (105.1¢ : 96.35¢)
Consistency limit 5
Distinct consistency limit 5

137 equal divisions of the octave (abbreviated 137edo or 137ed2), also called 137-tone equal temperament (137tet) or 137 equal temperament (137et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 137 equal parts of about 8.76 ¢ each. Each step represents a frequency ratio of 21/137, or the 137th root of 2.

Theory

137edo is a fairly accurate 5-limit temperament and also a strong no-7 19-limit temperament. The equal temperament tempers out 2109375/2097152 (semicomma), [-13 17 -6 (graviton), [8 14 -13 (parakleisma), and [-29 -11 20 (gammic comma) in the 5-limit. Using the patent val, it tempers out 225/224, 1728/1715, 2430/2401 in the 7-limit; 243/242 in the 11-limit; 351/350 in the 13-limit; 375/374 and 442/441 in the 17-limit; and 324/323 and 495/494 in the 19-limit. It provides the optimal patent val for 7-limit orwell temperament and for the planar temperament tempering out 2430/2401.

Prime harmonics

Approximation of prime harmonics in 137edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -1.23 -0.91 +3.44 +0.51 +0.35 +0.15 +0.30 +2.38 +4.00 +2.41
Relative (%) +0.0 -14.0 -10.4 +39.2 +5.8 +4.0 +1.8 +3.4 +27.2 +45.7 +27.5
Steps
(reduced)
137
(0)
217
(80)
318
(44)
385
(111)
474
(63)
507
(96)
560
(12)
582
(34)
620
(72)
666
(118)
679
(131)

Subsets and supersets

137edo is the 33rd prime edo, following 131edo and before 139edo. 274edo, which doubles it, provides a correction for its approximation to harmonic 7.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-217 137 [137 217]] 0.3865 0.3866 4.41
2.3.5 [-21 3 7, [-13 17 -6 [137 217 318]] 0.3887 0.3157 3.60

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 3\137 26.28 1594323/1562500 Sfourth (5-limit)
1 4\137 35.04 1990656/1953125 Gammic (137d) / gammy (137)
1 31\137 271.53 75/64 Orwell (137e) / sabric (137d)
1 36\137 315.33 6/5 Parakleismic
1 53\137 464.23 72/55 Borwell
1 59\137 516.79 27/20 Marvo (137)
1 63\137 551.82 11/8 Emka (137d) / emkay (137)

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct

Diagrams

A diagram of 7-limit orwell based on the 31\137edo generator:

137edo_MOS_031_demo_correction.png

137edo_MOS_031.svg