Pontiac
Pontiac is a 7-limit (and higher) temperament of the schismatic family. It is an extension of helmholtz temperament beyond the 5-limit but with the same simple chain-of-fifths structure (so that standard notation may be used). As in helmholtz temperament, 5/4 is mapped to the diminished fourth (e.g. C-F♭), and the new mapping specific to pontiac is that 7/4 is mapped to the quintuple augmented third (e.g. C-Exx#). This makes pontiac a ragismic temperament.
Immediate 11-limit extensions include helenoid (53 & 65), mapping 11/8 to -30 fifths, ponta (53 & 171), mapping 11/8 to -83 fifths, and pontic (118 & 171), mapping 11/8 to +88 fifths.
Pontiac was named by Gene Ward Smith in 2004[1].
Interval chain
# | Cents* | Approximate Ratios | |||
---|---|---|---|---|---|
7-limit | 17-limit Extension | ||||
Helenoid | Ponta | Pontic | |||
0 | 0.00 | 1/1 | |||
1 | 701.76 | 3/2 | |||
2 | 203.51 | 9/8 | |||
3 | 905.27 | 27/16 | 22/13 | ||
4 | 407.03 | 81/64 | |||
5 | 1108.78 | 243/128, 256/135 | |||
6 | 610.54 | 64/45 | |||
7 | 112.30 | 16/15 | |||
8 | 814.05 | 8/5 | |||
9 | 315.81 | 6/5 | |||
10 | 1017.57 | 9/5 | |||
11 | 519.32 | 27/20 | |||
12 | 21.08 | 81/80 | |||
13 | 722.84 | 243/160 | |||
14 | 224.59 | 256/225 | |||
15 | 926.35 | 128/75 | |||
16 | 428.11 | 32/25 | |||
17 | 1129.86 | 48/25 | |||
18 | 631.62 | 36/25 | |||
19 | 133.38 | 27/25 | |||
20 | 835.13 | 81/50 | |||
21 | 336.89 | 175/144 | 17/14 | 17/14 | 17/14 |
22 | 1038.65 | 175/96 | 20/11 | ||
23 | 540.40 | 175/128 | 15/11 | ||
24 | 42.16 | 128/125 | |||
25 | 743.92 | 192/125 | 20/13 | 20/13 | 20/13 |
26 | 245.67 | 144/125 | 15/13 | 15/13 | 15/13 |
27 | 947.43 | 140/81 | |||
28 | 449.19 | 35/27 | 22/17 | ||
29 | 1150.94 | 35/18 | |||
30 | 652.70 | 35/24 | 16/11 | ||
31 | 154.46 | 35/32 | 12/11 | ||
32 | 856.21 | 105/64 | 18/11 | ||
33 | 357.97 | 315/256 | 16/13 | 16/13 | 16/13 |
34 | 1059.73 | 448/243 | 24/13 | 24/13 | 24/13 |
35 | 561.48 | 112/81 | 18/13 | 18/13 | 18/13 |
36 | 63.24 | 28/27 | |||
37 | 765.00 | 14/9 | |||
38 | 266.75 | 7/6 | |||
39 | 968.51 | 7/4 | |||
40 | 470.27 | 21/16 | |||
41 | 1172.02 | 63/32 | |||
42 | 673.78 | 189/128 | |||
43 | 175.54 | 448/405 | |||
44 | 877.29 | 224/135 | |||
45 | 379.05 | 56/45 | |||
46 | 1080.81 | 28/15 | |||
47 | 582.56 | 7/5 | |||
48 | 84.32 | 21/20 | |||
49 | 786.08 | 63/40 | 11/7 | ||
50 | 287.83 | 189/160 | 13/11 | ||
51 | 989.59 | 567/320 | |||
52 | 491.35 | 896/675 | |||
53 | 1193.10 | 448/225 | |||
54 | 694.86 | 112/75 | |||
55 | 196.62 | 28/25 | |||
56 | 898.37 | 42/25 | |||
57 | 400.13 | 63/50 | |||
58 | 1101.89 | 189/100 | 17/9 | 17/9 | 17/9 |
59 | 603.64 | 567/400 | 17/12 | 17/12 | 17/12 |
60 | 105.40 | 1225/1152 | 17/16 | 17/16 | 17/16 |
61 | 807.16 | 1225/768 | |||
62 | 308.91 | 448/375 | |||
63 | 1010.67 | 224/125 | |||
64 | 512.43 | 168/125 | |||
65 | 14.18 | 126/125 | |||
66 | 715.94 | 189/125 | |||
67 | 217.70 | 245/216 | 17/15 | 17/15 | 17/15 |
68 | 919.45 | 245/144 | 17/10 | 17/10 | 17/10 |
69 | 421.21 | 245/192 | 14/11 | ||
70 | 1122.97 | 245/128 | |||
71 | 624.72 | 735/512, 896/625 | |||
72 | 126.48 | 672/625 | 14/13 | 14/13 | 14/13 |
73 | 828.24 | 392/243 | |||
74 | 329.99 | 98/81 | |||
75 | 1031.75 | 49/27 | 20/11 | ||
76 | 533.51 | 49/36 | 15/11 | ||
77 | 35.26 | 49/48 | |||
78 | 737.02 | 49/32 | |||
79 | 238.78 | 147/128 | |||
80 | 940.53 | 441/256 | |||
81 | 442.29 | 1323/1024, 1568/1215 | |||
82 | 1144.05 | 784/405 | |||
83 | 645.80 | 196/135 | 16/11 | ||
84 | 147.56 | 49/45 | 12/11 | ||
85 | 849.32 | 49/30 | 18/11 | ||
86 | 351.07 | 49/40 | 11/9 | ||
87 | 1052.83 | 147/80 | 11/6 | ||
88 | 554.59 | 441/320 | 11/8 | ||
89 | 56.34 | 1323/1280 | |||
90 | 758.10 | 3136/2025 | 17/11 | ||
91 | 259.86 | 784/675 | |||
92 | 961.61 | 392/225 | |||
93 | 463.37 | 98/75 | 17/13 | 17/13 | 17/13 |
94 | 1165.13 | 49/25 | |||
95 | 666.88 | 147/100 | 22/15 | ||
96 | 168.64 | 441/400 | 11/10 | ||
97 | 870.40 | 1323/800 | |||
98 | 372.15 | 3969/3200 | |||
99 | 1073.91 | 6272/3375 | |||
100 | 575.67 | 1568/1125 | |||
101 | 77.42 | 392/375 | |||
102 | 779.18 | 196/125 | |||
103 | 280.94 | 147/125 | |||
104 | 982.69 | 441/250 | |||
105 | 484.45 | 1323/1000 | |||
106 | 1186.21 | 1715/864 | |||
107 | 687.96 | 1715/1152 | |||
108 | 189.72 | 1715/1536 | |||
109 | 891.48 | 1715/1024, 3136/1875 | |||
110 | 393.23 | 784/625 | |||
111 | 1094.99 | 1176/625 | |||
112 | 596.75 | 343/243 | |||
113 | 98.50 | 343/324 | |||
114 | 800.26 | 343/216 | |||
115 | 302.02 | 343/288 | |||
116 | 1003.77 | 343/192 | |||
117 | 505.53 | 343/256 | |||
118 | 7.29 | 1029/1024 | |||
119 | 709.04 | 3087/2048, 4704/3125, 5488/3645 |
|||
120 | 210.80 | 1372/1215 | |||
121 | 912.56 | 686/405 | 22/13 | ||
122 | 414.31 | 343/270 | 14/11 | ||
123 | 1116.07 | 343/180 | |||
124 | 617.83 | 343/240 | |||
125 | 119.58 | 343/320 |
* in 7-limit POTE tuning
Notation
Using pontiac can be a challenge because it defies the tradition of tertian harmony in circle-of-fifths notation. The just major triad on C is C-Fb-G, for example. One may want to adopt an additional module of accidentals such as arrows to represent the comma step, allowing them to write the chord above as C-vE-G.
However, that which is considered sufficient to notate garibaldi may not be sufficient for pontiac when it comes to septimal and undecimal harmony, as 7/4 is a triple-up major sixth (C-^3A), which is still a lot of stacks of bending. The interval is often notated as a down-minor seventh such as in FJS and HEJI. Combination of these reasons suggests that another set of accidentals to represent 64/63, the septimal comma, or 5120/5103, the amount by which the septimal comma exceeds the syntonic comma, may be desired. Ponta, one notable extension to the 11-limit, identifies the undecimal quartertone of 33/32 by a stack of two septimal commas, and can benefit considerably from this new set of accidentals.
Tuning spectra
Helenoid
Gencom: [2 4/3; 352/351 385/384 561/560 625/624 729/728]
Gencom mapping: [⟨1 2 -1 19 -9 -10 29], ⟨0 -1 8 -39 30 33 -60]]
Eigenmonzo (Unchanged-interval) |
Generator (¢) |
Comments |
---|---|---|
11/10 | 701.5907 | |
15/11 | 701.6066 | |
11/8 | 701.6227 | |
12/11 | 701.6335 | |
11/9 | 701.6435 | |
16/15 | 701.6759 | |
14/11 | 701.7030 | 11-odd-limit minimax |
22/17 | 701.7071 | |
5/4 | 701.7108 | |
17/14 | 701.7205 | |
6/5 | 701.7379 | 5-odd-limit minimax |
17/15 | 701.7416 | |
18/17 | 701.7422 | |
20/17 | 701.7447 | |
24/17 | 701.7458 | |
17/16 | 701.7493 | |
15/14 | 701.7512 | |
9/7 | 701.7544 | |
7/5 | 701.7556 | 7-odd-limit minimax |
10/9 | 701.7596 | 9-odd-limit minimax |
7/6 | 701.7598 | |
8/7 | 701.7648 | |
17/13 | 701.7680 | 17-odd-limit minimax |
14/13 | 701.7819 | 13 and 15-odd-limit minimax |
16/13 | 701.8022 | |
13/12 | 701.8067 | |
18/13 | 701.8109 | |
13/10 | 701.8314 | |
15/13 | 701.8362 | |
4/3 | 701.9550 | |
13/11 | 703.5968 |
Ponta
Gencom: [2 4/3; 375/374 540/539 625/624 729/728 2200/2197]
Gencom mapping: [⟨1 2 -1 19 -31 -10 29], ⟨0 -1 8 -39 83 33 -60]]
Eigenmonzo (Unchanged-interval) |
Generator (¢) |
Comments |
---|---|---|
16/15 | 701.6759 | |
5/4 | 701.7108 | |
17/14 | 701.7205 | |
6/5 | 701.7379 | 5-odd-limit minimax |
17/15 | 701.7416 | |
18/17 | 701.7422 | |
20/17 | 701.7447 | |
24/17 | 701.7458 | |
17/16 | 701.7493 | |
15/14 | 701.7512 | |
9/7 | 701.7544 | |
7/5 | 701.7556 | 7-odd-limit minimax |
10/9 | 701.7596 | 9-odd-limit minimax |
7/6 | 701.7598 | |
8/7 | 701.7648 | |
17/13 | 701.7680 | |
22/17 | 701.7737 | 17-odd-limit minimax |
14/13 | 701.7819 | |
14/11 | 701.7829 | 11, 13 and 15-odd-limit minimax |
13/11 | 701.7842 | |
11/8 | 701.7914 | |
12/11 | 701.7933 | |
11/9 | 701.7952 | |
11/10 | 701.7999 | |
15/11 | 701.8020 | |
16/13 | 701.8022 | |
13/12 | 701.8067 | |
18/13 | 701.8109 | |
13/10 | 701.8314 | |
15/13 | 701.8362 | |
4/3 | 701.9550 |
Pontic
Gencom: [2 4/3; 441/440 595/594 625/624 729/728 2880/2873]
Gencom mapping: [⟨1 2 -1 19 40 -10 29], ⟨0 -1 8 -39 -88 33 -60]]
Eigenmonzo (Unchanged-interval) |
Generator (¢) |
Comments |
---|---|---|
22/17 | 701.6558 | |
16/15 | 701.6759 | |
14/11 | 701.6835 | |
5/4 | 701.7108 | |
11/9 | 701.7140 | |
15/11 | 701.7163 | |
12/11 | 701.7168 | |
11/10 | 701.7188 | |
11/8 | 701.7195 | 11-odd-limit minimax |
17/14 | 701.7205 | |
6/5 | 701.7379 | 5-odd-limit minimax |
17/15 | 701.7416 | |
13/11 | 701.7421 | 13, 15 and 17-odd-limit minimax |
18/17 | 701.7422 | |
20/17 | 701.7447 | |
24/17 | 701.7458 | |
17/16 | 701.7493 | |
15/14 | 701.7512 | |
9/7 | 701.7544 | |
7/5 | 701.7556 | 7-odd-limit minimax |
10/9 | 701.7596 | 9-odd-limit minimax |
7/6 | 701.7598 | |
8/7 | 701.7648 | |
17/13 | 701.7680 | |
14/13 | 701.7819 | |
16/13 | 701.8022 | |
13/12 | 701.8067 | |
18/13 | 701.8109 | |
13/10 | 701.8314 | |
15/13 | 701.8362 | |
4/3 | 701.9550 |