Garibaldi
Garibaldi is a 7-limit (and higher) temperament of the schismatic family. It is an extension of helmholtz temperament beyond the 5-limit but with the same simple chain-of-fifths structure (so that standard notation may be used). As in helmholtz temperament, 5/4 is mapped to the diminished fourth (e.g. C-F♭), and the new mapping specific to garibaldi is that 7/4 is mapped to the double diminished octave (e.g. C-Cbb). This makes garibaldi a marvel temperament.
Immediate 11-limit extensions include cassandra (41 & 53), mapping 11/8 to +23 fifths, andromeda (29 & 41), mapping 11/8 to -18 fifths, and helenus (53 & 65d), mapping 11/8 to -30 fifths. Garibaldi is most naturally a 2.3.5.7.19 subgroup temperament due to its immediate availability of 19/16 at the minor third (C-Eb). This is sometimes known as garibaldi nestoria.
Garibaldi was named in honor of Eduardo Sábat-Garibaldi, who developed the dinarra, a 53-tone microtonal guitar in the 1/9-schisma tuning.
Interval chain
In the following table, odd harmonics 1–21 are in bold.
# | Cents* | Approximate Ratios | |||
---|---|---|---|---|---|
2.3.5.7.19 Subgroup | 13-limit Extension | ||||
Cassandra | Andromeda | Helenus | |||
0 | 0.00 | 1/1 | |||
1 | 702.06 | 3/2 | |||
2 | 204.12 | 9/8 | |||
3 | 906.18 | 27/16, 32/19, 42/25 | 22/13 | 22/13 | 22/13 |
4 | 408.24 | 19/15, 24/19, 63/50, 80/63 | 14/11 | ||
5 | 1110.29 | 19/10, 36/19, 40/21 | 21/11 | ||
6 | 612.35 | 10/7 | |||
7 | 114.41 | 15/14, 16/15 | 14/13 | ||
8 | 816.47 | 8/5 | 21/13 | ||
9 | 318.53 | 6/5 | 40/33 | ||
10 | 1020.59 | 9/5, 38/21 | 20/11 | ||
11 | 522.65 | 19/14, 27/20 | 15/11 | ||
12 | 24.71 | 50/49, 57/56, 64/63, 81/80 | 40/39, 45/44 | ||
13 | 726.77 | 32/21 | 20/13 | ||
14 | 228.82 | 8/7 | 15/13 | ||
15 | 930.88 | 12/7 | 19/11 | ||
16 | 432.94 | 9/7 | 14/11 | ||
17 | 1135.00 | 27/14, 48/25 | 52/27 | 64/33 | 21/11 |
18 | 637.06 | 36/25, 81/56 | 13/9 | 16/11, 19/13 | |
19 | 139.12 | 27/25 | 13/12 | 12/11 | 14/13 |
20 | 841.18 | 80/49, 81/50 | 13/8, 44/27 | 18/11, 64/39 | 21/13 |
21 | 343.24 | 60/49 | 11/9, 39/32 | 16/13, 27/22 | 40/33 |
22 | 1045.30 | 64/35 | 11/6 | 24/13 | 20/11 |
23 | 547.35 | 48/35 | 11/8, 26/19 | 18/13 | 15/11 |
24 | 49.41 | 36/35 | 33/32 | 27/26 | 40/39, 45/44 |
25 | 751.47 | 54/35 | 20/13 | ||
26 | 253.53 | 81/70, 144/125 | 22/19 | 15/13 | |
27 | 955.59 | 216/125, 256/147 | 26/15 | 19/11 | |
28 | 457.65 | 64/49 | 13/10 | ||
29 | 1159.71 | 96/49 | 39/20, 88/45 | 64/33 | |
30 | 661.77 | 72/49 | 22/15 | 16/11, 19/13 | |
31 | 163.83 | 54/49 | 11/10 | 12/11 | |
32 | 865.88 | 81/49 | 33/20 | 18/11, 64/39 | |
33 | 367.94 | 216/175 | 26/21 | 16/13, 27/22 | |
34 | 1070.00 | 324/175 | 13/7 | 24/13 | |
35 | 572.06 | 243/175 | 18/13 | ||
36 | 74.12 | 256/245 | 22/21 | 27/26 | |
37 | 776.18 | 384/245 | 11/7 | ||
38 | 278.24 | 288/245 | |||
39 | 980.30 | 432/245 | |||
40 | 482.36 | 324/245 | |||
41 | 1184.41 | 486/245 |
* in 7-limit CTE tuning
Notation
Using garibaldi can be a challenge because it defies the tradition of tertian harmony in circle-of-fifths notation. The just major triad on C is C-Fb-G, for example. One may want to adopt an additional module of accidentals such as arrows to represent the comma step, allowing them to write the chord above as C-vE-G.
Ratio | Nominal | Example |
---|---|---|
3/2 | Perfect fifth | C-G |
5/4 | Down major third | C-vE |
7/4 | Down minor seventh | C-vBb |
11/8 | Double-up fourth | C-^^F |
13/8 | Double-up minor sixth | C-^^Ab |
19/16 | Minor third | C-Eb |
Ratio | Nominal | Example |
---|---|---|
11/8 | Down diminished fifth Double-down augmented fourth |
C-vGb C-vvF# |
13/8 | Double down major sixth | C-vvA |
Ratio | Nominal | Example |
---|---|---|
11/8 | Double-down diminished fifth Triple-down augmented fourth |
C-vvGb C-v3F# |
13/8 | Triple-down major sixth | C-v3A |
Chords and harmony
Traditional tertian harmony is effective. The default triads on the Pythagorean spine are undevicesimal in quality:
- 1-19/15-3/2 (C-E-G)
- 1-19/16-3/2 (C-Eb-G)
Note that the major third also represents 24/19, and the minor third, 13/11. These chords are typically associated with a sort of coldness and metalness, like those in 12edo if not more so.
If a warm, sweet, laid-back sound is desired, the thirds can be inflected inwards by a comma to yield
- 1-5/4-3/2 (C-vE-G)
- 1-6/5-3/2 (C-^Eb-G)
Contrarily, for a more sour and active sound, they can be inflected outwards by a comma to yield
- 1-9/7-3/2 (C-^E-G)
- 1-7/6-3/2 (C-vEb-G)
Scales
- Garibaldi5 – proper 2L 3s
- Garibaldi7 – improper 5L 2s
- Garibaldi12 – proper 5L 7s
- Garibaldi17 – improper 12L 5s
- Garibaldi24opt – optimized 24-note scale for 13-limit
Tunings
Tuning spectra
Garibaldi
Edo Generator |
Eigenmonzo (Unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
7\12 | 700.0000 | Lower bound of 9-odd-limit, 2.3.5.7.19 subgroup 19- and 21-odd-limit diamond monotone | |
19/16 | 700.8290 | 1/3 undevicesimal schisma | |
19/12 | 701.1105 | 1/4 undevicesimal schisma | |
38\65 | 701.5385 | ||
15/8 | 701.676 | 1/7 schisma | |
5/4 | 701.711 | 1/8 schisma | |
25/24 | 701.7252 | 2/17 schisma | |
5/3 | 701.738 | 5-odd-limit minimax, 1/9 schisma | |
9/5 | 701.760 | 1/10 schisma | |
81/80 | 701.7922 | 1/12 schisma | |
31\53 | 701.8868 | ||
3/2 | 701.9550 | Pythagorean tuning | |
36/35 | 702.0321 | ||
9/7 | 702.193 | 9-odd-limit minimax, 1/16 septimal schisma | |
7/6 | 702.209 | 7-odd-limit minimax, 1/15 septimal schisma | |
49/48 | 702.2174 | 2/29 septimal schisma | |
7/4 | 702.227 | 1/14 septimal schisma | |
19/10 | 702.2399 | ||
21/16 | 702.2476 | 1/13 septimal schisma | |
64/63 | 702.2720 | 1/12 septimal schisma | |
19/15 | 702.3111 | ||
24\41 | 702.4390 | ||
19/14 | 702.6079 | ||
21/19 | 702.6732 | ||
15/14 | 702.778 | ||
7/5 | 702.915 | ||
21/20 | 703.1066 | ||
17\29 | 703.4483 | Upper bound of 9-odd-limit, 2.3.5.7.19 subgroup 19- and 21-odd-limit diamond monotone | |
13/11 | 703.597 |
Cassandra
Gencom: [2 4/3; 225/224 275/273 325/324 385/384]
Gencom mapping: [⟨1 2 -1 -3 13 12], ⟨0 -1 8 14 -23 -20]]
Edo Generator |
Eigenmonzo (Unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
7\12 | 700.0000 | Lower bound of 9-odd-limit diamond monotone | |
19/16 | 700.8290 | 1/3 undevicesimal schisma | |
19/12 | 701.1105 | 1/4 undevicesimal schisma | |
38\65 | 701.5385 | ||
15/8 | 701.676 | 1/7 schisma | |
5/4 | 701.711 | 1/8 schisma | |
25/24 | 701.7252 | 2/17 schisma | |
[0 -10 17⟩ | 701.728 | 5-odd-limit least squares | |
5/3 | 701.738 | 5-odd-limit minimax, 1/9 schisma | |
9/5 | 701.760 | 1/10 schisma | |
81/80 | 701.7922 | 1/12 schisma | |
19/13 | 701.8702 | ||
31\53 | 701.8868 | Lower bound of 11-, 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
15/13 | 701.9355 | ||
13/10 | 701.9362 | ||
3/2 | 701.9550 | Pythagorean tuning | |
13/8 | 702.026 | ||
13/12 | 702.030 | ||
36/35 | 702.0321 | ||
13/9 | 702.034 | ||
19/11 | 702.0694 | ||
11/10 | 702.097 | ||
15/11 | 702.102 | ||
13/7 | 702.109 | 13- and 15-odd-limit minimax | |
[0 -95 -137 -129 167 143⟩ | 702.112 | 15-odd-limit least squares | |
21/13 | 702.1135 | ||
[0 -27 7 17⟩ | 702.114 | 9-odd-limit least squares | |
[0 -38 -80 -122 137 116⟩ | 702.128 | 13-odd-limit least squares | |
[0 -25 11 35⟩ | 702.140 | 7-odd-limit least squares | |
[0 17 -52 -88 134⟩ | 702.183 | 11-odd-limit least squares | |
9/7 | 702.193 | 9- and 11-odd-limit minimax, 1/16 septimal schisma | |
7/6 | 702.209 | 7-odd-limit minimax, 1/15 septimal schisma | |
49/48 | 702.2174 | 2/29 septimal schisma | |
7/4 | 702.227 | 1/14 septimal schisma | |
11/7 | 702.230 | ||
11/8 | 702.231 | ||
21/11 | 702.2371 | ||
19/10 | 702.2399 | ||
11/6 | 702.244 | ||
21/16 | 702.2476 | 1/13 septimal schisma | |
11/9 | 702.258 | ||
64/63 | 702.2720 | 1/12 septimal schisma | |
19/15 | 702.3111 | ||
24\41 | 702.4390 | Upper bound of 11-, 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
19/14 | 702.6079 | ||
21/19 | 702.6732 | ||
15/14 | 702.778 | ||
7/5 | 702.915 | ||
21/20 | 703.1066 | ||
17\29 | 703.4483 | Upper bound of 9-odd-limit diamond monotone | |
13/11 | 703.597 |
Andromeda
Gencom: [2 4/3; 100/99 105/104 196/195 245/242]
Gencom mapping: [⟨1 2 -1 -3 -4 -5], ⟨0 -1 8 14 18 21]]
Edo Generator |
Eigenmonzo (Unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
7\12 | 700.0000 | Lower bound of 9- and 11-odd-limit diamond monotone | |
19/16 | 700.8290 | 1/3 undevicesimal schisma | |
19/12 | 701.1105 | 1/4 undevicesimal schisma | |
38\65 | 701.5385 | ||
15/8 | 701.676 | 1/7 schisma | |
5/4 | 701.711 | 1/8 schisma | |
25/24 | 701.7252 | 2/17 schisma | |
5/3 | 701.738 | 5-odd-limit minimax, 1/9 schisma | |
9/5 | 701.760 | 1/10 schisma | |
81/80 | 701.7922 | 1/12 schisma | |
31\53 | 701.8868 | ||
3/2 | 701.9550 | Pythagorean tuning | |
36/35 | 702.0321 | ||
9/7 | 702.193 | 9-odd-limit minimax, 1/16 septimal schisma | |
7/6 | 702.209 | 7-odd-limit minimax, 1/15 septimal schisma | |
49/48 | 702.2174 | 2/29 septimal schisma | |
7/4 | 702.227 | 1/14 septimal schisma | |
21/16 | 702.2476 | 1/13 septimal schisma | |
64/63 | 702.2720 | 1/12 septimal schisma | |
19/15 | 702.3111 | ||
24\41 | 702.4390 | Lower bound of 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
19/14 | 702.6079 | ||
11/9 | 702.630 | 11-odd-limit minimax | |
11/6 | 702.665 | ||
21/19 | 702.6732 | ||
11/8 | 702.705 | ||
13/9 | 702.756 | 13- and 15-odd-limit minimax | |
15/14 | 702.778 | ||
13/12 | 702.792 | ||
13/8 | 702.832 | ||
7/5 | 702.915 | ||
19/11 | 703.0797 | ||
21/20 | 703.1066 | ||
19/13 | 703.1659 | ||
15/11 | 703.359 | ||
15/13 | 703.410 | ||
17\29 | 703.4483 | Upper bound of 9-, 11-, 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
11/10 | 703.500 | ||
13/10 | 703.522 | ||
13/11 | 703.597 | ||
21/13 | 701.7817 | ||
19/10 | 702.2399 | ||
21/11 | 703.8926 | ||
13/7 | 704.043 | ||
11/7 | 704.377 |
Helenus
Gencom: [2 4/3; 99/98 176/175 275/273 847/845]
Gencom mapping: [⟨1 2 -1 -3 -9 -10], ⟨0 -1 8 14 30 33]]
Edo Generator |
Eigenmonzo (Unchanged-interval) |
Generator (¢) | Comments |
---|---|---|---|
7\12 | 700.0000 | Lower bound of 9- and 11-odd-limit diamond monotone | |
19/16 | 700.8290 | 1/3 undevicesimal schisma | |
11/7 | 701.094 | ||
19/12 | 701.1105 | 1/4 undevicesimal schisma | |
21/11 | 701.1149 | ||
13/7 | 701.489 | ||
21/13 | 701.5127 | ||
38\65 | 701.5385 | Lower bound of 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
11/10 | 701.591 | ||
15/11 | 701.607 | ||
11/8 | 701.623 | ||
11/6 | 701.633 | ||
11/9 | 701.644 | 11-, 13-, and 15-odd-limit minimax | |
15/8 | 701.676 | 1/7 schisma | |
19/11 | 701.7109 | ||
5/4 | 701.711 | 1/8 schisma | |
25/24 | 701.7252 | 2/17 schisma | |
5/3 | 701.738 | 5-odd-limit minimax, 1/9 schisma | |
9/5 | 701.760 | 1/10 schisma | |
81/80 | 701.7922 | 1/12 schisma | |
13/8 | 701.802 | ||
13/12 | 701.807 | ||
13/9 | 701.811 | ||
13/10 | 701.831 | ||
15/13 | 701.836 | ||
31\53 | 701.8868 | Upper bound of 11-, 13-, 15-odd-limit, 2.3.5.7.11.13.19 subgroup 19- and 21-odd-limit diamond monotone | |
19/13 | 701.8995 | ||
3/2 | 701.9550 | Pythagorean tuning | |
36/35 | 702.0321 | ||
9/7 | 702.193 | 9-odd-limit minimax, 1/16 septimal schisma | |
7/6 | 702.209 | 7-odd-limit minimax, 1/15 septimal schisma | |
49/48 | 702.2174 | 2/29 septimal schisma | |
7/4 | 702.227 | 1/14 septimal schisma | |
19/10 | 702.2399 | ||
21/16 | 702.2476 | 1/13 septimal schisma | |
64/63 | 702.2720 | 1/12 septimal schisma | |
19/15 | 702.3111 | ||
24\41 | 702.4390 | ||
19/14 | 702.6079 | ||
21/19 | 702.6732 | ||
15/14 | 702.778 | ||
7/5 | 702.915 | ||
21/20 | 703.1066 | ||
17\29 | 703.4483 | Upper bound of 9-odd-limit diamond monotone | |
13/11 | 703.597 |