65edo
← 64edo | 65edo | 66edo → |
65 equal divisions of the octave (abbreviated 65edo or 65ed2), also called 65-tone equal temperament (65tet) or 65 equal temperament (65et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 65 equal parts of about 18.5 ¢ each. Each step represents a frequency ratio of 21/65, or the 65th root of 2.
Theory
65et can be characterized as the temperament which tempers out 32805/32768 (schisma), 78732/78125 (sensipent comma), 393216/390625 (würschmidt comma), and [-13 17 -6⟩ (graviton). In the 7-limit, there are two different maps; the first is ⟨65 103 151 182] (65), tempering out 126/125, 245/243 and 686/675, so that it supports sensi, and the second is ⟨65 103 151 183] (65d), tempering out 225/224, 3125/3087, 4000/3969 and 5120/5103, so that it supports garibaldi. In both cases, the tuning privileges the 5-limit over the 7-limit, as the 5-limit of 65 is quite accurate. The same can be said for the two different versions of 7-limit würschmidt temperament (wurschmidt and worschmidt) these two mappings provide.
65edo approximates the intervals 3/2, 5/4, 11/8, 19/16, 23/16, 31/16 and 47/32 well, so that it does a good job representing the 2.3.5.11.19.23.31.47 just intonation subgroup. To this one may want to add 17/16, 29/16 and 43/32, giving the 47-limit no-7's no-13's no-37's no-41's subgroup 2.3.5.11.17.19.23.29.31.43.47. In this sense it is a tuning of schismic/nestoria that focuses on the very primes that 53edo neglects (which instead elegantly connects primes 7, 13, 37, and 41 to nestoria). Also of interest is the 19-limit 2*65 subgroup 2.3.5.49.11.91.119.19, on which 65 has the same tuning and commas as the zeta edo 130edo.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.42 | +1.38 | -8.83 | +2.53 | +8.70 | +5.81 | -2.13 | -0.58 | +4.27 | -0.42 | +7.12 | -4.45 | +5.41 | -0.89 |
Relative (%) | +0.0 | -2.3 | +7.5 | -47.8 | +13.7 | +47.1 | +31.5 | -11.5 | -3.2 | +23.1 | -2.3 | +38.6 | -24.1 | +29.3 | -4.8 | |
Steps (reduced) |
65 (0) |
103 (38) |
151 (21) |
182 (52) |
225 (30) |
241 (46) |
266 (6) |
276 (16) |
294 (34) |
316 (56) |
322 (62) |
339 (14) |
348 (23) |
353 (28) |
361 (36) |
Subsets and supersets
65edo contains 5edo and 13edo as subsets. The offset between a just perfect fifth at 702 cents and the 13edo superfifth at 738.5 cents, is approximately 2 degrees of 65edo. Therefore, an instrument fretted to 13edo, with open strings tuned to 3-limit intervals such as 4/3, 3/2, 9/8, 16/9 etc, will approximate a subset of 65edo. For an example of this, see Andrew Heathwaite's composition Rubble: a Xenuke Unfolded.
130edo, which doubles its, corrects its approximation to harmonics 7 and 13.
Intervals
# | Cents | Approximate ratios[note 1] | Ups and downs notation | |
---|---|---|---|---|
0 | 0.00 | 1/1 | P1 | D |
1 | 18.46 | 81/80, 88/87, 93/92, 94/93, 95/94, 96/95, 100/99, 121/120, 115/114, 116/115, 125/124 | ^1 | ^D |
2 | 36.92 | 45/44, 46/45, 47/46, 48/47, 55/54, 128/125 | ^^1 | ^^D |
3 | 55.38 | 30/29, 31/30, 32/31, 33/32, 34/33 | vvm2 | vvEb |
4 | 73.85 | 23/22, 24/23, 25/24, 47/45 | vm2 | vEb |
5 | 92.31 | 18/17, 19/18, 20/19, 58/55, 135/128, 256/243 | m2 | Eb |
6 | 110.77 | 16/15, 17/16, 33/31 | A1/^m2 | D#/^Eb |
7 | 129.23 | 14/13, 27/25, 55/51 | v~2 | ^^Eb |
8 | 147.69 | 12/11, 25/23 | ~2 | vvvE |
9 | 166.15 | 11/10, 32/29 | ^~2 | vvE |
10 | 184.62 | 10/9, 19/17 | vM2 | vE |
11 | 203.08 | 9/8, 64/57 | M2 | E |
12 | 221.54 | 17/15, 25/22, 33/29, 58/51 | ^M2 | ^E |
13 | 240.00 | 23/20, 31/27, 38/33, 54/47, 55/48 | ^^M2 | ^^E |
14 | 258.46 | 22/19, 29/25, 36/31, 64/55 | vvm3 | vvF |
15 | 276.92 | 20/17, 27/23, 34/29, 75/64 | vm3 | vF |
16 | 295.38 | 19/16, 32/27 | m3 | F |
17 | 313.85 | 6/5, 55/46 | ^m3 | ^F |
18 | 332.31 | 23/19, 40/33 | v~3 | ^^F |
19 | 350.77 | 11/9, 27/22, 38/31 | ~3 | ^^^F |
20 | 369.23 | 26/21, 47/38, 68/55 | ^~3 | vvF# |
21 | 387.69 | 5/4, 64/51 | vM3 | vF# |
22 | 406.15 | 19/15, 24/19, 29/23, 34/27, 81/64 | M3 | F# |
23 | 424.62 | 23/18, 32/25 | ^M3 | ^F# |
24 | 443.08 | 22/17, 31/24, 40/31, 128/99 | ^^M3 | ^^F# |
25 | 461.54 | 30/23, 47/36, 72/55 | vv4 | vvG |
26 | 480.00 | 29/22, 33/25, 62/47 | v4 | vG |
27 | 498.46 | 4/3 | P4 | G |
28 | 516.92 | 23/17, 27/20, 31/23 | ^4 | ^G |
29 | 535.38 | 15/11, 34/25, 64/47 | v~4 | ^^G |
30 | 553.85 | 11/8, 40/29, 62/45 | ~4 | ^^^G |
31 | 572.31 | 25/18, 32/23 | ^~4/vd5 | vvG#/vAb |
32 | 590.77 | 24/17, 31/22, 38/27, 45/32 | vA4/d5 | vG#/Ab |
33 | 609.23 | 17/12, 27/19, 44/31, 64/45 | A4/^d5 | G#/^Ab |
34 | 627.69 | 36/25, 23/16 | ^A4/v~5 | ^G#/^^Ab |
35 | 646.15 | 16/11, 29/20, 45/31 | ~5 | vvvA |
36 | 664.62 | 22/15, 25/17, 47/32 | ^~5 | vvA |
37 | 683.08 | 34/23, 40/27, 46/31 | v5 | vA |
38 | 701.54 | 3/2 | P5 | A |
39 | 720.00 | 44/29, 50/33, 47/31 | ^5 | ^A |
40 | 738.46 | 23/15, 55/36, 72/47 | ^^5 | ^^A |
41 | 756.92 | 17/11, 48/31, 31/20, 99/64 | vvm6 | vvBb |
42 | 775.38 | 25/16, 36/23 | vm6 | vBb |
43 | 793.85 | 19/12, 27/17, 30/19, 46/29, 128/81 | m6 | Bb |
44 | 812.31 | 8/5, 51/32 | ^m6 | ^Bb |
45 | 830.77 | 21/13, 55/34, 76/47 | v~6 | ^^Bb |
46 | 849.23 | 18/11, 31/19, 44/27 | ~6 | vvvB |
47 | 867.69 | 33/20, 38/23 | ^~6 | vvB |
48 | 886.15 | 5/3, 92/55 | vM6 | vB |
49 | 904.62 | 27/16, 32/19 | M6 | B |
50 | 923.08 | 17/10, 29/17, 46/27, 128/75 | ^M6 | ^B |
51 | 941.54 | 19/11, 31/18, 50/29, 55/32 | ^^M6 | ^^B |
52 | 960.00 | 33/19, 40/23, 47/27, 54/31, 96/55 | vvm7 | vvC |
53 | 978.46 | 30/17, 44/25, 51/29, 58/33 | vm7 | vC |
54 | 996.92 | 16/9, 57/32 | m7 | C |
55 | 1015.38 | 9/5, 34/19 | ^m7 | ^C |
56 | 1033.85 | 20/11, 29/16 | v~7 | ^^C |
57 | 1052.31 | 11/6, 46/25 | ~7 | ^^^C |
58 | 1070.77 | 13/7, 50/27, 102/55 | ^~7 | vvC# |
59 | 1089.23 | 15/8, 32/17, 62/33 | vM7 | vC# |
60 | 1107.69 | 17/9, 19/10, 36/19, 55/29, 243/128, 256/135 | M7 | C# |
61 | 1126.15 | 23/12, 44/23, 48/25, 90/47 | ^M7 | ^C# |
62 | 1144.62 | 29/15, 31/16, 33/17, 60/31, 64/33 | ^^M7 | ^^C# |
63 | 1163.08 | 45/23, 47/24, 88/45, 92/47, 108/55, 125/64 | vv8 | vvD |
64 | 1181.54 | 87/55, 93/47, 95/48, 99/50, 115/58, 160/81, 184/93, 188/95, 228/115, 240/121, 248/125 | v8 | vD |
65 | 1200.00 | 2/1 | P8 | D |
Notation
Ups and downs notation
65edo can be notated with ups and downs, spoken as up, dup, trup, dudsharp, downsharp, sharp, upsharp etc. and down, dud, trud, dupflat etc.
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Flat symbol | ![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Half-sharps and half-flats can be used to avoid triple arrows:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Flat symbol | ![]() |
![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
![]() ![]() |
![]() ![]() ![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() |
Alternative ups and downs have arrows borrowed from extended Helmholtz–Ellis notation:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
If double arrows are not desirable, arrows can be attached to quarter-tone accidentals:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Ivan Wyschnegradsky's notation
Since a sharp raises by six steps, Wyschnegradsky accidentals borrowed from 72edo can also be used:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() ![]() | |
Flat symbol | ![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Sagittal notation
This notation uses the same sagittal sequence as EDOs 72 and 79.
Evo flavor

Revo flavor

Evo-SZ flavor

Approximation to JI
Zeta peak index
Tuning | Strength | Octave (cents) | Integer limit | |||||||
---|---|---|---|---|---|---|---|---|---|---|
ZPI | Steps per 8ve |
Step size (cents) |
Height | Integral | Gap | Size | Stretch | Consistent | Distinct | |
Tempered | Pure | |||||||||
334zpi | 65.015845 | 18.457039 | 7.813349 | 7.642373 | 1.269821 | 16.514861 | 1199.707547 | −0.292453 | 6 | 6 |
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-103 65⟩ | [⟨65 103]] | +0.131 | 0.131 | 0.71 |
2.3.5 | 32805/32768, 78732/78125 | [⟨65 103 151]] | −0.110 | 0.358 | 1.94 |
2.3.5.11 | 243/242, 4000/3993, 5632/5625 | [⟨65 103 151 225]] | −0.266 | 0.410 | 2.22 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperament |
---|---|---|---|---|
1 | 3\65 | 55.38 | 33/32 | Escapade |
1 | 9\65 | 166.15 | 11/10 | Squirrel etc. |
1 | 12\65 | 221.54 | 25/22 | Hemisensi |
1 | 19\65 | 350.77 | 11/9 | Karadeniz |
1 | 21\65 | 387.69 | 5/4 | Würschmidt |
1 | 24\65 | 443.08 | 162/125 | Sensipent |
1 | 27\65 | 498.46 | 4/3 | Helmholtz / nestoria / photia |
1 | 28\65 | 516.92 | 27/20 | Larry |
5 | 20\65 (6\65) |
369.23 (110.77) |
99/80 (16/15) |
Quintosec |
5 | 27\65 (1\65) |
498.46 (18.46) |
4/3 (81/80) |
Quintile |
5 | 30\65 (4\65) |
553.85 (73.85) |
11/8 (25/24) |
Countdown |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct
Scales
- Amulet[idiosyncratic term], (approximated from 25edo, subset of würschmidt): 5 3 5 5 3 5 12 5 5 3 5 12 5
- Photia7
- Photia12
- Skateboard7
Instruments
Notes
- ↑ Based on treating 65edo as a 2.3.5.11.13/7.17.19.23.29.31.47 subgroup temperament; other approaches are also possible.