66edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 65edo 66edo 67edo →
Prime factorization 2 × 3 × 11
Step size 18.1818¢ 
Fifth 39\66 (709.091¢) (→13\22)
Semitones (A1:m2) 9:3 (163.6¢ : 54.55¢)
Dual sharp fifth 39\66 (709.091¢) (→13\22)
Dual flat fifth 38\66 (690.909¢) (→19\33)
Dual major 2nd 11\66 (200¢) (→1\6)
Consistency limit 3
Distinct consistency limit 3

66 equal divisions of the octave (abbreviated 66edo or 66ed2), also called 66-tone equal temperament (66tet) or 66 equal temperament (66et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 66 equal parts of about 18.2 ¢ each. Each step represents a frequency ratio of 21/66, or the 66th root of 2.

Theory

The patent val of 66edo is contorted in the 5-limit, tempering out the same commas (250/243, 2048/2025, 3125/3072, etc.) as 22edo. In the 7-limit it tempers out 686/675 and 1029/1024, in the 11-limit 55/54, 100/99 and 121/120, in the 13-limit 91/90, 169/168, 196/195 and in the 17-limit 136/135 and 256/255. It provides the optimal patent val for the 11- and 13-limit ammonite temperament. Otherwise, 66edo is not exceptional when it comes to approximating prime harmonics; however, it contains a quite accurate approximation to the 5:7:9:11:13 chord and can therefore be used for various over-5 scales.

The 66b val tempers out 16875/16384 in the 5-limit, 126/125, 1728/1715 and 2401/2400 in the 7-limit, 99/98 and 385/384 in the 11-limit, and 105/104, 144/143 and 847/845 in the 13-limit.

109 steps of 66edo is extremely close to the acoustic pi with only +0.023 cents of error.

Odd harmonics

Approximation of odd harmonics in 66edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +7.14 -4.50 -5.19 -3.91 -5.86 -4.16 +2.64 +4.14 -6.60 +1.95 +8.09
Relative (%) +39.2 -24.7 -28.5 -21.5 -32.2 -22.9 +14.5 +22.7 -36.3 +10.7 +44.5
Steps
(reduced)
105
(39)
153
(21)
185
(53)
209
(11)
228
(30)
244
(46)
258
(60)
270
(6)
280
(16)
290
(26)
299
(35)

Subsets and supersets

Since 66 factors into 2 × 3 × 11, 66edo has subset edos 2, 3, 6, 11, 22, and 33. 198edo, which triples it, corrects its approximation to many of the lower harmonics.

Interval table

Steps Cents Approximate ratios Ups and downs notation
(Dual flat fifth 38\66)
Ups and downs notation
(Dual sharp fifth 39\66)
0 0 1/1 D D
1 18.2 ^D, vE♭♭♭♭ ^D, vvE♭
2 36.4 D♯, E♭♭♭♭ ^^D, vE♭
3 54.5 31/30, 32/31, 33/32, 34/33 ^D♯, vE♭♭♭ ^3D, E♭
4 72.7 24/23 D𝄪, E♭♭♭ ^4D, ^E♭
5 90.9 20/19 ^D𝄪, vE♭♭ v4D♯, ^^E♭
6 109.1 16/15, 33/31 D♯𝄪, E♭♭ v3D♯, ^3E♭
7 127.3 14/13 ^D♯𝄪, vE♭ vvD♯, ^4E♭
8 145.5 D𝄪𝄪, E♭ vD♯, v4E
9 163.6 11/10, 34/31 ^D𝄪𝄪, vE D♯, v3E
10 181.8 E ^D♯, vvE
11 200 28/25 ^E, vF♭♭♭ ^^D♯, vE
12 218.2 17/15, 25/22 E♯, F♭♭♭ E
13 236.4 ^E♯, vF♭♭ ^E, vvF
14 254.5 22/19 E𝄪, F♭♭ ^^E, vF
15 272.7 34/29 ^E𝄪, vF♭ F
16 290.9 13/11 E♯𝄪, F♭ ^F, vvG♭
17 309.1 ^E♯𝄪, vF ^^F, vG♭
18 327.3 29/24 F ^3F, G♭
19 345.5 ^F, vG♭♭♭♭ ^4F, ^G♭
20 363.6 21/17 F♯, G♭♭♭♭ v4F♯, ^^G♭
21 381.8 ^F♯, vG♭♭♭ v3F♯, ^3G♭
22 400 29/23 F𝄪, G♭♭♭ vvF♯, ^4G♭
23 418.2 14/11 ^F𝄪, vG♭♭ vF♯, v4G
24 436.4 F♯𝄪, G♭♭ F♯, v3G
25 454.5 13/10 ^F♯𝄪, vG♭ ^F♯, vvG
26 472.7 21/16, 25/19 F𝄪𝄪, G♭ ^^F♯, vG
27 490.9 ^F𝄪𝄪, vG G
28 509.1 G ^G, vvA♭
29 527.3 19/14, 23/17 ^G, vA♭♭♭♭ ^^G, vA♭
30 545.5 26/19 G♯, A♭♭♭♭ ^3G, A♭
31 563.6 ^G♯, vA♭♭♭ ^4G, ^A♭
32 581.8 7/5 G𝄪, A♭♭♭ v4G♯, ^^A♭
33 600 17/12, 24/17 ^G𝄪, vA♭♭ v3G♯, ^3A♭
34 618.2 10/7 G♯𝄪, A♭♭ vvG♯, ^4A♭
35 636.4 ^G♯𝄪, vA♭ vG♯, v4A
36 654.5 19/13 G𝄪𝄪, A♭ G♯, v3A
37 672.7 28/19, 31/21, 34/23 ^G𝄪𝄪, vA ^G♯, vvA
38 690.9 A ^^G♯, vA
39 709.1 ^A, vB♭♭♭♭ A
40 727.3 32/21 A♯, B♭♭♭♭ ^A, vvB♭
41 745.5 20/13 ^A♯, vB♭♭♭ ^^A, vB♭
42 763.6 A𝄪, B♭♭♭ ^3A, B♭
43 781.8 11/7 ^A𝄪, vB♭♭ ^4A, ^B♭
44 800 35/22 A♯𝄪, B♭♭ v4A♯, ^^B♭
45 818.2 ^A♯𝄪, vB♭ v3A♯, ^3B♭
46 836.4 34/21 A𝄪𝄪, B♭ vvA♯, ^4B♭
47 854.5 ^A𝄪𝄪, vB vA♯, v4B
48 872.7 B A♯, v3B
49 890.9 ^B, vC♭♭♭ ^A♯, vvB
50 909.1 22/13 B♯, C♭♭♭ ^^A♯, vB
51 927.3 29/17 ^B♯, vC♭♭ B
52 945.5 19/11 B𝄪, C♭♭ ^B, vvC
53 963.6 ^B𝄪, vC♭ ^^B, vC
54 981.8 30/17 B♯𝄪, C♭ C
55 1000 25/14 ^B♯𝄪, vC ^C, vvD♭
56 1018.2 C ^^C, vD♭
57 1036.4 20/11, 31/17 ^C, vD♭♭♭♭ ^3C, D♭
58 1054.5 35/19 C♯, D♭♭♭♭ ^4C, ^D♭
59 1072.7 13/7 ^C♯, vD♭♭♭ v4C♯, ^^D♭
60 1090.9 15/8 C𝄪, D♭♭♭ v3C♯, ^3D♭
61 1109.1 19/10 ^C𝄪, vD♭♭ vvC♯, ^4D♭
62 1127.3 23/12 C♯𝄪, D♭♭ vC♯, v4D
63 1145.5 31/16, 33/17 ^C♯𝄪, vD♭ C♯, v3D
64 1163.6 C𝄪𝄪, D♭ ^C♯, vvD
65 1181.8 ^C𝄪𝄪, vD ^^C♯, vD
66 1200 2/1 D D

Notation

Sagittal notation

This notation uses the same sagittal sequence as 59-EDO, and is a superset of the notations for EDOs 22 and 11.

Evo flavor

66-EDO Evo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation513/512144/14381/801053/1024

Revo flavor

66-EDO Revo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation513/512144/14381/801053/1024

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.