33edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 32edo 33edo 34edo →
Prime factorization 3 × 11
Step size 36.3636¢ 
Fifth 19\33 (690.909¢)
Semitones (A1:m2) 1:4 (36.36¢ : 145.5¢)
Consistency limit 3
Distinct consistency limit 3

33 equal divisions of the octave (abbreviated 33edo or 33ed2), also called 33-tone equal temperament (33tet) or 33 equal temperament (33et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 33 equal parts of about 36.4 ¢ each. Each step represents a frequency ratio of 21/33, or the 33rd root of 2.

Theory

33edo is not especially good at representing all rational intervals in the 7-limit, but it does very well on the 7-limit 3*33 subgroup 2.27.15.21.11.13. On this subgroup it tunes things to the same tuning as 99edo, and as a subgroup patent val it tempers out the same commas. The 99 equal temperaments hemififths, amity, parakleismic, hemiwuerschmidt, ennealimmal and hendecatonic can be reduced to this subgroup and give various possibilities for MOS scales, etc. In particular, the terrain 2.7/5.9/5 subgroup temperament can be tuned via the 5\33 generator. The full system of harmony provides the optimal patent val for slurpee temperament in the 5, 7, 11 and 13 limits.

While relatively uncommon, 33edo is actually quite an interesting system. As a multiple of 11edo, it approximates the 7th and 11th harmonics via orgone temperament (see 26edo). 33edo also tunes the 13th harmonic slightly flat, allowing it to approximate the 21st and 17th harmonics as well, having a 3L 7s with L = 4, s = 3. The 33c mapping (which has val 33 52 76]) tempers out 81/80 and can be used to represent 1/2-comma meantone, a "flattertone" tuning where the whole tone is 10/9 in size. Indeed, the perfect fifth is tuned about 11 cents flat, and two stacked fifths fall only 0.6 cents flat of 10/9. Leaving the scale be would result in the standard diatonic scale (5L 2s) having minor seconds of four steps and whole tones of five steps. This also results in common practice minor and major chords becoming more supraminor and submajor in character, making everything sound almost neutral in quality.

Instead of the flat 19\33 fifth you may use the sharp fifth of 20\33, over 25 cents sharp. Two of these lead to a 9/8 of 7\33, which is about 22/19 in size and may be counted as a small third. Between the flat 5\33 version of 9/8 and the sharp 7\33 version there is, of course, a 6\33 = 2\11 11edo interval of 218 cents. Now 6\33 + 5\33 = 11\33 = 1\3 of an octave, or 400 cents, the same major third as 12edo. Also, we have both a 327 minor third from 9\33 = 3\11, the same as the 22edo minor third, and a flatter 8\33 third of 291 cents, which if you like could also be called a flat 19th harmonic, but much more accurately a 13/11 sharp by 1.7 cents (if you use the patent val it is an extremely inaccurate 6/5). Another talent it has is that 7/5 is tuned quite accurately by 16\33, and we may put two 8\33 versions of 13/11 together to produce the cuthbert triad. The 8\33 generator, with MOS of size 5, 9 and 13, gives plenty of scope for these, as well as the 11, 13 and 19 harmonics (taking the generator as a 19/16) which are relatively well in tune.

33edo contains an accurate approximation of the Bohlen-Pierce scale with 4\33 near 1\13edt.

So while it might not be the most harmonically accurate temperament, it's structurally quite interesting, and it approximates the full 19-limit consort in it's way. You could even say it tunes the 23rd and 29th harmonics ten cents flat if you were so inclined; as well as getting within two cents of the 37th.

Other notable 33edo scales are diasem with L:m:s = 5:3:1 and 5L 4s with L:s = 5:2. This step ratio for 5L 4s is great for its semitone size of 72.7¢.

33 is also the number of years in the Iranian calendar's leap cycle, where leap year is inserted once every 4 or 5 years. This corresponds to the 1L 7s with the step ratio of 5:4.

Because the chromatic semitone in 33edo is 1 step, 33edo can be notated using only naturals, sharps, and flats. However, many key signatures will require double- and triple-sharps and flats, making notation very unwieldy in distant keys.

Harmonics

Approximation of odd harmonics in 33edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -11.0 +13.7 +13.0 +14.3 -5.9 -4.2 +2.6 +4.1 -6.6 +1.9 -10.1
Relative (%) -30.4 +37.6 +35.7 +39.2 -16.1 -11.5 +7.3 +11.4 -18.2 +5.4 -27.8
Steps
(reduced)
52
(19)
77
(11)
93
(27)
105
(6)
114
(15)
122
(23)
129
(30)
135
(3)
140
(8)
145
(13)
149
(17)

Intervals

Step # ET Just Difference
(ET minus Just)
Extended Pythagorean Notation
Cents Interval Cents
0 1/1 0 0 Perfect Unison P1 D
1 36.364 48/47 36.448 −0.085 Augmented Unison A1 D#
2 72.727 24/23 73.681 −0.953 Double-aug 1sn AA1 Dx
3 109.091 16/15 111.731 −2.640 Diminished 2nd d2 Ebb
4 145.455 12/11 150.637 −5.183 Minor 2nd m2 Eb
5 181.818 10/9 182.404 −0.586 Major 2nd M2 E
6 218.182 17/15 216.687 +1.495 Augmented 2nd A2 E#
7 254.545 15/13 247.741 +6.804 Double-aug 2nd/Double-dim 3rd AA2/dd3 Ex/Fbb
8 290.909 13/11 289.210 +1.699 Diminished 3rd d3 Fb
9 327.273 6/5 315.641 +11.631 Minor 3rd m3 F
10 363.636 16/13 359.472 +4.164 Major 3rd M3 F#
11 400.000 5/4 386.314 +13.686 Augmented 3rd A3 Fx
12 436.364 9/7 435.084 +1.280 Double-dim 4th dd4 Gbb
13 472.727 21/16 470.781 +1.946 Diminished 4th d4 Gb
14 509.091 4/3 498.045 +11.046 Perfect 4th P4 G
15 545.455 11/8 551.318 −5.863 Augmented 4th A4 G#
16 581.818 7/5 582.513 −0.694 Double-aug 4th AA4 Gx
17 618.182 10/7 617.488 +0.694 Double-dim 5th dd5 Abb
18 654.545 16/11 648.682 +5.863 Diminished 5th d5 Ab
19 690.909 3/2 701.9550 −11.046 Perfect 5th P5 A
20 727.273 32/21 729.219 -1.946 Augmented 5th A5 A#
21 763.636 14/9 764.9159 −1.280 Double-aug 5th AA5 Ax
22 800.000 8/5 813.686 −13.686 Double-dim 6th d6 Bbb
23 836.364 13/8 840.5276 −4.164 Minor 6th m6 Bb
24 872.727 5/3 884.359 −11.631 Major 6th M6 B
25 909.091 22/13 910.7903 −1.699 Augmented 6th A6 B#
26 945.455 12/7 933.129 +12.325 Double-aug 6th/Double-dim 7th AA6/dd7 Bx/Cbb
27 981.818 30/17 983.313 −1.495 Diminished 7th d7 Cb
28 1018.182 9/5 1017.596 +0.586 Minor 7th m7 C
29 1054.545 11/6 1049.363 +5.183 Major 7th M7 C#
30 1090.909 15/8 1088.268 +2.640 Augmented 7th A7 Cx
31 1127.273 23/12 1126.319 −0.953 Double-dim 8ve dd8 Dbb
32 1163.636 47/24 1163.551 +0.085 Diminished 8ve d8 Db
33 1200 2/1 1200 0 Perfect Octave P8 D

Nearby equal temperaments

33edo.png

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-52 33 [33 52]] +3.48 3.49 9.59
2.3.5 81/80, 1171875/1048576 [33 52 76]] (33cd) +5.59 4.13 11.29
2.3.5.7 49/48, 81/80, 1875/1792 [33 52 76 92]] (33cd) +6.29 3.77 10.31
2.3.5.7.11 45/44, 49/48, 81/80, 1375/1344 [33 52 76 92 114]] (33cd) +5.36 3.84 10.50
2.3.5.7.11.13 45/44, 49/48, 65/64, 81/80, 275/273 [33 52 76 92 114 122]] (33cd) +4.65 3.84 10.52

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 2\33 72.73 21/20 Slurpee (33)
1 4\33 145.45 12/11 Bohpier (33cd)
1 7\33 254.55 8/7 Godzilla (33cd)
1 8\33 290.91 25/21 Quasitemp (33b)
1 10\33 363.64 49/40 Submajor (33ee) / interpental (33e)
1 14\33 509.09 4/3 Flattertone (33cd)
Deeptone a.k.a. tragicomical (33)
1 16\33 581.82 7/5 Tritonic (33)
3 7\33
(4\33)
254.55
(145.45)
8/7
(12/11)
Triforce (33d)
3 13\33
(2\33)
472.73
(72.73)
4/3
(25/24)
Inflated (33bcddd)
3 14\33
(3\33)
509.09
(98.09)
4/3
(16/15)
August (33cd)

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Scales

Brightest mode is listed except where noted.

  • Deeptone[7], 5 5 5 4 5 5 4 (diatonic)
  • Deeptone[12], 4 4 1 4 1 4 4 1 4 1 4 1 (chromatic)
  • Deeptone[19], 3 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 3 1 1 (enharmonic)
  • Semiquartal, 5 5 2 5 2 5 2 5 2
  • Semiquartal[14], 3 2 3 2 2 3 2 2 3 2 2
  • Iranian Calendar, 5 4 4 4 4 4 4 4
  • Diasem, 5 3 5 1 5 3 5 1 5 (*right-handed)
  • Diasem, 5 1 5 3 5 1 5 3 5 (*left-handed)
  • Diamech (4sR), 1 5 1 5 2 5 1 5 1 5 2
  • Diamech (4sL), 2 5 1 5 1 5 2 5 1 5 1
  • Diamech (4sC), 1 5 2 5 1 5 1 5 2 5 1

Delta-rational harmony

The tables below show chords that approximate 3-integer-limit delta-rational chords with least-squares error less than 0.001.

Fully delta-rational triads

Steps Delta signature Least-squares error
0,1,2 +1+1 0.00021
0,1,3 +1+2 0.00048
0,1,4 +1+3 0.00078
0,2,3 +2+1 0.00039
0,2,4 +1+1 0.00087
0,3,4 +3+1 0.00056
0,3,11 +1+3 0.00007
0,5,8 +3+2 0.00084
0,8,18 +2+3 0.00082
0,9,20 +2+3 0.00076
0,12,17 +2+1 0.00048
0,13,20 +3+2 0.00063
0,15,21 +2+1 0.00063
0,16,28 +1+1 0.00082
0,18,25 +2+1 0.00081
0,18,31 +1+1 0.00058
0,19,24 +3+1 0.00095

Partially delta-rational tetrads

Steps Delta signature Least-squares error
0,1,2,3 +1+?+1 0.00053
0,1,2,4 +1+?+2 0.00094
0,1,3,4 +1+?+1 0.00080
0,1,17,18 +2+?+3 0.00073
0,1,17,19 +1+?+3 0.00071
0,1,18,19 +2+?+3 0.00042
0,1,18,20 +1+?+3 0.00032
0,1,19,20 +2+?+3 0.00010
0,1,19,21 +1+?+3 0.00008
0,1,20,21 +2+?+3 0.00023
0,1,20,22 +1+?+3 0.00049
0,1,21,22 +2+?+3 0.00056
0,1,21,23 +1+?+3 0.00091
0,1,22,23 +2+?+3 0.00090
0,1,31,32 +1+?+2 0.00071
0,2,3,4 +2+?+1 0.00077
0,2,6,11 +1+?+3 0.00094
0,2,7,12 +1+?+3 0.00013
0,2,8,13 +1+?+3 0.00069
0,2,12,13 +3+?+2 0.00083
0,2,12,15 +1+?+2 0.00087
0,2,13,14 +3+?+2 0.00045
0,2,13,16 +1+?+2 0.00014
0,2,14,15 +3+?+2 0.00008
0,2,14,17 +1+?+2 0.00060
0,2,15,16 +3+?+2 0.00031
0,2,16,17 +3+?+2 0.00071
0,2,18,20 +2+?+3 0.00084
0,2,18,22 +1+?+3 0.00024
0,2,19,21 +2+?+3 0.00020
0,2,19,23 +1+?+3 0.00058
0,2,20,22 +2+?+3 0.00046
0,3,4,5 +3+?+1 0.00097
0,3,5,9 +2+?+3 0.00010
0,3,6,10 +2+?+3 0.00090
0,3,7,12 +1+?+2 0.00074
0,3,8,13 +1+?+2 0.00037
0,3,10,17 +1+?+3 0.00009
0,3,17,23 +1+?+3 0.00096
0,3,18,22 +1+?+2 0.00088
0,3,18,24 +1+?+3 0.00027
0,3,19,20 +2+?+1 0.00059
0,3,19,21 +1+?+1 0.00063
0,3,19,22 +2+?+3 0.00030
0,3,19,23 +1+?+2 0.00023
0,3,20,21 +2+?+1 0.00014
0,3,20,22 +1+?+1 0.00015
0,3,20,23 +2+?+3 0.00070
0,3,21,22 +2+?+1 0.00032
0,3,21,23 +1+?+1 0.00095
0,3,22,23 +2+?+1 0.00078
0,3,27,32 +1+?+3 0.00004
0,4,5,12 +1+?+2 0.00026
0,4,6,16 +1+?+3 0.00066
0,4,8,13 +2+?+3 0.00023
0,4,11,20 +1+?+3 0.00023
0,4,13,14 +3+?+1 0.00091
0,4,13,19 +1+?+2 0.00048
0,4,14,15 +3+?+1 0.00050
0,4,14,16 +3+?+2 0.00055
0,4,14,17 +1+?+1 0.00021
0,4,15,16 +3+?+1 0.00009
0,4,15,17 +3+?+2 0.00023
0,4,15,18 +1+?+1 0.00085
0,4,16,17 +3+?+1 0.00034
0,4,17,18 +3+?+1 0.00077
0,4,17,25 +1+?+3 0.00043
0,4,19,23 +2+?+3 0.00041
0,4,20,24 +2+?+3 0.00094
0,4,22,27 +1+?+2 0.00020
0,4,24,31 +1+?+3 0.00022
0,5,6,9 +3+?+2 0.00003
0,5,7,10 +3+?+2 0.00097
0,5,7,19 +1+?+3 0.00004
0,5,9,17 +1+?+2 0.00017
0,5,10,16 +2+?+3 0.00019
0,5,11,13 +2+?+1 0.00087
0,5,11,15 +1+?+1 0.00018
0,5,12,14 +2+?+1 0.00011
0,5,12,23 +1+?+3 0.00067
0,5,13,15 +2+?+1 0.00067
0,5,16,23 +1+?+2 0.00008
0,5,17,27 +1+?+3 0.00055
0,5,19,24 +2+?+3 0.00051
0,5,22,31 +1+?+3 0.00057
0,5,24,30 +1+?+2 0.00036
0,5,25,26 +3+?+1 0.00071
0,5,25,27 +3+?+2 0.00082
0,5,25,28 +1+?+1 0.00045
0,5,26,27 +3+?+1 0.00018
0,5,26,28 +3+?+2 0.00016
0,5,26,29 +1+?+1 0.00090
0,5,27,28 +3+?+1 0.00035
0,5,28,29 +3+?+1 0.00090
0,6,7,17 +1+?+2 0.00087
0,6,8,22 +1+?+3 0.00045
0,6,9,14 +1+?+1 0.00031
0,6,11,18 +2+?+3 0.00093
0,6,12,21 +1+?+2 0.00036
0,6,12,25 +1+?+3 0.00032
0,6,15,18 +3+?+2 0.00026
0,6,16,19 +3+?+2 0.00095
0,6,16,28 +1+?+3 0.00053
0,6,18,26 +1+?+2 0.00064
0,6,19,25 +2+?+3 0.00062
0,6,20,24 +1+?+1 0.00052
0,6,21,23 +2+?+1 0.00031
0,6,21,32 +1+?+3 0.00033
0,6,22,24 +2+?+1 0.00063
0,6,25,32 +1+?+2 0.00034
0,7,8,14 +1+?+1 0.00029
0,7,8,24 +1+?+3 0.00080
0,7,9,11 +3+?+1 0.00066
0,7,9,12 +2+?+1 0.00041
0,7,9,13 +3+?+2 0.00019
0,7,10,12 +3+?+1 0.00009
0,7,10,13 +2+?+1 0.00070
0,7,11,13 +3+?+1 0.00087
0,7,12,27 +1+?+3 0.00041
0,7,16,30 +1+?+3 0.00098
0,7,17,22 +1+?+1 0.00008
0,7,19,26 +2+?+3 0.00073
0,7,20,29 +1+?+2 0.00002
0,7,23,26 +3+?+2 0.00010
0,7,28,32 +1+?+1 0.00033
0,7,29,31 +2+?+1 0.00020
0,7,30,32 +2+?+1 0.00091
0,8,12,29 +1+?+3 0.00097
0,8,13,22 +2+?+3 0.00051
0,8,15,21 +1+?+1 0.00062
0,8,15,31 +1+?+3 0.00047
0,8,16,18 +3+?+1 0.00066
0,8,16,19 +2+?+1 0.00031
0,8,16,20 +3+?+2 0.00043
0,8,16,27 +1+?+2 0.00090
0,8,17,19 +3+?+1 0.00022
0,8,17,20 +2+?+1 0.00098
0,8,19,27 +2+?+3 0.00085
0,8,24,29 +1+?+1 0.00020
0,9,11,16 +3+?+2 0.00051
0,9,13,20 +1+?+1 0.00002
0,9,14,24 +2+?+3 0.00073
0,9,18,30 +1+?+2 0.00090
0,9,19,28 +2+?+3 0.00096
0,9,21,27 +1+?+1 0.00040
0,9,22,24 +3+?+1 0.00087
0,9,22,25 +2+?+1 0.00053
0,9,22,26 +3+?+2 0.00026
0,9,23,25 +3+?+1 0.00013
0,9,23,26 +2+?+1 0.00093
0,10,11,26 +1+?+2 0.00035
0,10,11,32 +1+?+3 0.00081
0,10,12,20 +1+?+1 0.00098
0,10,14,18 +2+?+1 0.00050
0,10,14,25 +2+?+3 0.00088
0,10,15,29 +1+?+2 0.00041
0,10,16,21 +3+?+2 0.00055
0,10,19,32 +1+?+2 0.00021
0,10,27,31 +3+?+2 0.00082
0,10,28,30 +3+?+1 0.00045
0,10,28,31 +2+?+1 0.00016
0,10,29,31 +3+?+1 0.00068
0,11,12,18 +3+?+2 0.00030
0,11,13,16 +3+?+1 0.00081
0,11,14,17 +3+?+1 0.00044
0,11,16,31 +1+?+2 0.00064
0,11,17,25 +1+?+1 0.00091
0,11,19,23 +2+?+1 0.00045
0,11,21,26 +3+?+2 0.00074
0,12,15,24 +1+?+1 0.00087
0,12,15,28 +2+?+3 0.00013
0,12,17,23 +3+?+2 0.00054
0,12,18,21 +3+?+1 0.00043
0,12,19,22 +3+?+1 0.00095
0,12,23,27 +2+?+1 0.00083
0,12,26,31 +3+?+2 0.00005
0,13,14,24 +1+?+1 0.00019
0,13,17,22 +2+?+1 0.00085
0,13,21,27 +3+?+2 0.00035
0,13,22,25 +3+?+1 0.00097
0,13,23,26 +3+?+1 0.00054
0,13,28,32 +2+?+1 0.00055
0,14,17,24 +3+?+2 0.00099
0,14,18,28 +1+?+1 0.00043
0,14,21,26 +2+?+1 0.00080
0,14,25,31 +3+?+2 0.00054
0,14,27,30 +3+?+1 0.00050
0,15,16,20 +3+?+1 0.00055
0,15,17,28 +1+?+1 0.00064
0,15,21,28 +3+?+2 0.00045
0,15,22,32 +1+?+1 0.00039
0,16,18,26 +3+?+2 0.00049
0,16,19,25 +2+?+1 0.00031
0,16,20,24 +3+?+1 0.00018
0,16,25,32 +3+?+2 0.00095
0,17,22,28 +2+?+1 0.00091
0,17,23,27 +3+?+1 0.00066
0,18,27,31 +3+?+1 0.00095
0,19,21,28 +2+?+1 0.00065
0,20,24,31 +2+?+1 0.00078
0,21,22,32 +3+?+2 0.00091
0,22,27,32 +3+?+1 0.00038

Instruments

Lumatone mapping for 33edo

Music

Modern renderings

Johann Sebastian Bach

21st century

Bryan Deister
Peter Kosmorsky
Budjarn Lambeth
Claudi Meneghin
Relyt R
Chris Vaisvil
Xeno*n*