5L 4s

From Xenharmonic Wiki
Jump to: navigation, search

The familiar harmonic entropy minimum with this MOS pattern is godzilla, in which a generator is 8/7 or 7/6 (tempered to be the same interval, or even 37/32 if you like) so two of them make a 4/3. However, in addition to godzilla (tempering out 81/80) and the 2.3.7 temperament semaphore, there is also a weird scale called "pseudo-semaphore", in which two different flavors of 3/2 exist in the same scale: an octave minus two generators makes a sharp 3/2, and two octaves minus seven generators makes a flat 3/2.

Generator Cents Comments
1\5 240
12\59 244.068 Pseudo-semaphore is around here
11\54 244.444
10\49 244.898
9\44 245.455
8\39 246.154
7\34 247.059
6\29 248.276
11\53 249.057 Semaphore is around here
5\24 250 L/s = 4
9\43 251.163
252.178 L/s = pi
4\19 252.632 Godzilla is around here

L/s = 3

253.643 L/s = e
11\52 253.813
29\137 254.015
76\359 254.039
199\940 254.043
123\581 254.045
47\222 254.054
18\85 254.118
7\33 254.5455
10\47 255.319
13\61 255.734
16\75 256.000
3\14 257.143 Boundary of propriety (generators

larger than this are proper)

11\51 258.8235
258.957
8\37 259.459
21\97 259.794
55\254 259.843
144\665 259.850
233\1076 259.851 Golden superpelog
89\411 259.854
34\157 259.873
13\60 260
260.246
5\23 260.870 Optimum rank range (L/s=3/2) superpelog
7\32 262.5
9\41 263.415
11\50 264
13\59 264.407
15\68 264.706
17\77 264.935
19\86 265.116
21\95 265.263
2\9 266.667