73edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 72edo 73edo 74edo →
Prime factorization 73 (prime)
Step size 16.4384¢ 
Fifth 43\73 (706.849¢)
Semitones (A1:m2) 9:4 (147.9¢ : 65.75¢)
Consistency limit 7
Distinct consistency limit 7

73 equal divisions of the octave (abbreviated 73edo or 73ed2), also called 73-tone equal temperament (73tet) or 73 equal temperament (73et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 73 equal parts of about 16.4 ¢ each. Each step represents a frequency ratio of 21/73, or the 73rd root of 2.

Theory

73edo has a very sharp tendency, with the approximations of 3, 5, 7, 11 all sharp. The equal temperament tempers out 78732/78125 and 262144/253125 in the 5-limit; 126/125 and 245/243 in the 7-limit; 176/175, 441/440 and 4000/3993 in the 11-limit; 91/90, 169/168, 196/195, 325/324, 351/350 and 352/351 in the 13-limit. It provides the optimal patent val for the marrakesh temperament, though 104edo and 135edo tunes it better.

73edo fits in mavila scale, by the 9;5 relation in the superdiatonic scheme.

Prime harmonics

Approximation of prime harmonics in 73edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +4.89 +8.21 +1.04 +7.59 -2.17 -6.33 -1.62 -3.62 +6.04 +5.65
Relative (%) +0.0 +29.8 +49.9 +6.3 +46.1 -13.2 -38.5 -9.9 -22.0 +36.7 +34.4
Steps
(reduced)
73
(0)
116
(43)
170
(24)
205
(59)
253
(34)
270
(51)
298
(6)
310
(18)
330
(38)
355
(63)
362
(70)

Subsets and supersets

73edo is the 21st prime edo, past 71edo and before 79edo.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 16.4 ^D, v3E♭
2 32.9 ^^D, vvE♭
3 49.3 36/35, 38/37 ^3D, vE♭
4 65.8 ^4D, E♭
5 82.2 21/20, 22/21 v4D♯, ^E♭
6 98.6 35/33 v3D♯, ^^E♭
7 115.1 31/29 vvD♯, ^3E♭
8 131.5 14/13, 27/25 vD♯, ^4E♭
9 147.9 12/11, 37/34 D♯, v4E
10 164.4 11/10 ^D♯, v3E
11 180.8 10/9 ^^D♯, vvE
12 197.3 ^3D♯, vE
13 213.7 26/23 E
14 230.1 8/7 ^E, v3F
15 246.6 ^^E, vvF
16 263 ^3E, vF
17 279.5 F
18 295.9 19/16 ^F, v3G♭
19 312.3 6/5 ^^F, vvG♭
20 328.8 23/19, 29/24, 35/29 ^3F, vG♭
21 345.2 11/9 ^4F, G♭
22 361.6 16/13 v4F♯, ^G♭
23 378.1 v3F♯, ^^G♭
24 394.5 vvF♯, ^3G♭
25 411 vF♯, ^4G♭
26 427.4 F♯, v4G
27 443.8 31/24 ^F♯, v3G
28 460.3 ^^F♯, vvG
29 476.7 29/22 ^3F♯, vG
30 493.2 G
31 509.6 ^G, v3A♭
32 526 19/14, 23/17 ^^G, vvA♭
33 542.5 26/19 ^3G, vA♭
34 558.9 29/21 ^4G, A♭
35 575.3 v4G♯, ^A♭
36 591.8 31/22 v3G♯, ^^A♭
37 608.2 37/26 vvG♯, ^3A♭
38 624.7 vG♯, ^4A♭
39 641.1 29/20 G♯, v4A
40 657.5 19/13 ^G♯, v3A
41 674 28/19, 31/21, 34/23 ^^G♯, vvA
42 690.4 ^3G♯, vA
43 706.8 A
44 723.3 ^A, v3B♭
45 739.7 ^^A, vvB♭
46 756.2 31/20 ^3A, vB♭
47 772.6 ^4A, B♭
48 789 v4A♯, ^B♭
49 805.5 35/22 v3A♯, ^^B♭
50 821.9 37/23 vvA♯, ^3B♭
51 838.4 13/8 vA♯, ^4B♭
52 854.8 18/11 A♯, v4B
53 871.2 38/23 ^A♯, v3B
54 887.7 5/3 ^^A♯, vvB
55 904.1 32/19 ^3A♯, vB
56 920.5 B
57 937 ^B, v3C
58 953.4 ^^B, vvC
59 969.9 7/4 ^3B, vC
60 986.3 23/13 C
61 1002.7 ^C, v3D♭
62 1019.2 9/5 ^^C, vvD♭
63 1035.6 20/11 ^3C, vD♭
64 1052.1 11/6 ^4C, D♭
65 1068.5 13/7 v4C♯, ^D♭
66 1084.9 v3C♯, ^^D♭
67 1101.4 vvC♯, ^3D♭
68 1117.8 21/11 vC♯, ^4D♭
69 1134.2 C♯, v4D
70 1150.7 35/18, 37/19 ^C♯, v3D
71 1167.1 ^^C♯, vvD
72 1183.6 ^3C♯, vD
73 1200 2/1 D

Notation

Sagittal notation

This notation uses the same sagittal sequence as 80-EDO.

Evo flavor

73-EDO Evo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8045/4433/32

Revo flavor

73-EDO Revo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8045/4433/32

Scales

  • Porky[7]: 10 10 10 13 10 10 10 ((10, 20, 30, 43, 53, 63, 73)\73)

Music

Claudi Meneghin