74edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 73edo 74edo 75edo →
Prime factorization 2 × 37
Step size 16.2162¢ 
Fifth 43\74 (697.297¢)
Semitones (A1:m2) 5:7 (81.08¢ : 113.5¢)
Consistency limit 5
Distinct consistency limit 5

74 equal divisions of the octave (abbreviated 74edo or 74ed2), also called 74-tone equal temperament (74tet) or 74 equal temperament (74et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 74 equal parts of about 16.2 ¢ each. Each step represents a frequency ratio of 21/74, or the 74th root of 2.

Theory

74edo is most notable as a meantone tuning, tempering out 81/80 in the 5-limit; 126/125 and 225/224 in the 7-limit; 99/98, 176/175 and 441/440 in the 11-limit; and 144/143 and 847/845 in the 13-limit. Discarding 847/845 from that gives the 13-limit meantone extension grosstone, for which 74edo gives the optimal patent val; and discarding 144/143 gives semimeantone, a 13-limit 62 & 74 temperament with half-octave period and two parallel tracks of meantone.

74edo tunes harmonic 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.

Odd harmonics

Approximation of odd harmonics in 74edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.66 +2.88 +4.15 +6.90 +0.03 +2.72 -1.78 -7.66 -5.62 -0.51 +4.16
Relative (%) -28.7 +17.7 +25.6 +42.6 +0.2 +16.7 -11.0 -47.2 -34.7 -3.1 +25.6
Steps
(reduced)
117
(43)
172
(24)
208
(60)
235
(13)
256
(34)
274
(52)
289
(67)
302
(6)
314
(18)
325
(29)
335
(39)

Subsets and supersets

Since 74 factors into 2 × 37, 74edo contains 2edo and 37edo as its subsets.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 16.2 ^D, vE♭♭
2 32.4 ^^D, E♭♭
3 48.6 34/33, 37/36, 38/37 vvD♯, ^E♭♭
4 64.9 26/25 vD♯, ^^E♭♭
5 81.1 21/20, 22/21 D♯, vvE♭
6 97.3 18/17 ^D♯, vE♭
7 113.5 16/15 ^^D♯, E♭
8 129.7 14/13 vvD𝄪, ^E♭
9 145.9 25/23, 37/34 vD𝄪, ^^E♭
10 162.2 11/10 D𝄪, vvE
11 178.4 31/28 ^D𝄪, vE
12 194.6 19/17, 28/25, 37/33 E
13 210.8 26/23, 35/31 ^E, vF♭
14 227 33/29 ^^E, F♭
15 243.2 23/20, 38/33 vvE♯, ^F♭
16 259.5 vE♯, ^^F♭
17 275.7 34/29 E♯, vvF
18 291.9 13/11 ^E♯, vF
19 308.1 F
20 324.3 29/24 ^F, vG♭♭
21 340.5 28/23 ^^F, G♭♭
22 356.8 16/13 vvF♯, ^G♭♭
23 373 26/21, 31/25, 36/29 vF♯, ^^G♭♭
24 389.2 5/4 F♯, vvG♭
25 405.4 24/19 ^F♯, vG♭
26 421.6 37/29 ^^F♯, G♭
27 437.8 vvF𝄪, ^G♭
28 454.1 13/10 vF𝄪, ^^G♭
29 470.3 21/16, 38/29 F𝄪, vvG
30 486.5 ^F𝄪, vG
31 502.7 G
32 518.9 31/23 ^G, vA♭♭
33 535.1 15/11 ^^G, A♭♭
34 551.4 11/8 vvG♯, ^A♭♭
35 567.6 vG♯, ^^A♭♭
36 583.8 7/5 G♯, vvA♭
37 600 17/12, 24/17 ^G♯, vA♭
38 616.2 10/7 ^^G♯, A♭
39 632.4 vvG𝄪, ^A♭
40 648.6 16/11 vG𝄪, ^^A♭
41 664.9 22/15 G𝄪, vvA
42 681.1 ^G𝄪, vA
43 697.3 A
44 713.5 ^A, vB♭♭
45 729.7 29/19, 32/21, 35/23 ^^A, B♭♭
46 745.9 20/13, 37/24 vvA♯, ^B♭♭
47 762.2 31/20 vA♯, ^^B♭♭
48 778.4 A♯, vvB♭
49 794.6 19/12 ^A♯, vB♭
50 810.8 8/5 ^^A♯, B♭
51 827 21/13, 29/18 vvA𝄪, ^B♭
52 843.2 13/8 vA𝄪, ^^B♭
53 859.5 23/14 A𝄪, vvB
54 875.7 ^A𝄪, vB
55 891.9 B
56 908.1 22/13 ^B, vC♭
57 924.3 29/17 ^^B, C♭
58 940.5 vvB♯, ^C♭
59 956.8 33/19 vB♯, ^^C♭
60 973 B♯, vvC
61 989.2 23/13 ^B♯, vC
62 1005.4 25/14, 34/19 C
63 1021.6 ^C, vD♭♭
64 1037.8 20/11 ^^C, D♭♭
65 1054.1 vvC♯, ^D♭♭
66 1070.3 13/7 vC♯, ^^D♭♭
67 1086.5 15/8 C♯, vvD♭
68 1102.7 17/9 ^C♯, vD♭
69 1118.9 21/11 ^^C♯, D♭
70 1135.1 25/13 vvC𝄪, ^D♭
71 1151.4 33/17, 37/19 vC𝄪, ^^D♭
72 1167.6 C𝄪, vvD
73 1183.8 ^C𝄪, vD
74 1200 2/1 D

Notation

Sagittal notation

Evo flavor

74-EDO Evo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation1701/166436/351053/1024

Revo flavor

74-EDO Revo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation1701/166436/351053/1024

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.

Music

Modern renderings

Scott Joplin
  • Maple Leaf Rag (1899) – rendered by Francium (2024)
  • Maple Leaf Rag (1899) – arranged for harpsichord and rendered by Claudi Meneghin (2024)

21st century

Claudi Meneghin