74edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 73edo74edo75edo →
Prime factorization 2 × 37
Step size 16.2162¢ 
Fifth 43\74 (697.297¢)
Semitones (A1:m2) 5:7 (81.08¢ : 113.5¢)
Consistency limit 5
Distinct consistency limit 5

74 equal divisions of the octave (abbreviated 74edo or 74ed2), also called 74-tone equal temperament (74tet) or 74 equal temperament (74et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 74 equal parts of about 16.2 ¢ each. Each step represents a frequency ratio of 21/74, or the 74th root of 2.

Theory

74edo is most notable as a meantone tuning, tempering out 81/80 in the 5-limit; 126/125 and 225/224 in the 7-limit; 99/98, 176/175 and 441/440 in the 11-limit; and 144/143 and 847/845 in the 13-limit. Discarding 847/845 from that gives the 13-limit meantone extension grosstone, for which 74edo gives the optimal patent val; and discarding 144/143 gives semimeantone, a 13-limit 62 & 74 temperament with half-octave period and two parallel tracks of meantone.

74edo tunes harmonic 11 only 1/30 of a cent sharp, and 13 2.7 cents sharp, making it a distinctly interesting choice for higher-limit meantone.

Odd harmonics

Approximation of odd harmonics in 74edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.66 +2.88 +4.15 +6.90 +0.03 +2.72 -1.78 -7.66 -5.62 -0.51 +4.16
Relative (%) -28.7 +17.7 +25.6 +42.6 +0.2 +16.7 -11.0 -47.2 -34.7 -3.1 +25.6
Steps
(reduced)
117
(43)
172
(24)
208
(60)
235
(13)
256
(34)
274
(52)
289
(67)
302
(6)
314
(18)
325
(29)
335
(39)

Subsets and supersets

Since 74 factors into 2 × 37, 74edo contains 2edo and 37edo as its subsets.

Intervals

Steps Cents Approximate Ratios Ups and Downs Notation
0 0 1/1 D
1 16.216 78/77 ^D, vE♭♭
2 32.432 45/44, 50/49, 56/55, 64/63, 65/64 ^^D, E♭♭
3 48.649 33/32, 40/39, 77/75 ^3D, v4E♭
4 64.865 26/25, 80/77 ^4D, v3E♭
5 81.081 21/20, 22/21 D♯, vvE♭
6 97.297 52/49, 55/52 ^D♯, vE♭
7 113.514 15/14, 16/15 ^^D♯, E♭
8 129.73 14/13 ^3D♯, v4E
9 145.946 12/11 ^4D♯, v3E
10 162.162 11/10 D𝄪, vvE
11 178.378 ^D𝄪, vE
12 194.595 28/25, 55/49 E
13 210.811 44/39 ^E, vF♭
14 227.027 8/7, 25/22 ^^E, F♭
15 243.243 15/13 ^3E, v4F
16 259.459 64/55, 65/56 ^4E, v3F
17 275.676 75/64 E♯, vvF
18 291.892 13/11, 77/65 ^E♯, vF
19 308.108 25/21 F
20 324.324 77/64 ^F, vG♭♭
21 340.541 39/32 ^^F, G♭♭
22 356.757 16/13, 49/40 ^3F, v4G♭
23 372.973 26/21 ^4F, v3G♭
24 389.189 5/4 F♯, vvG♭
25 405.405 ^F♯, vG♭
26 421.622 14/11, 32/25 ^^F♯, G♭
27 437.838 77/60 ^3F♯, v4G
28 454.054 13/10 ^4F♯, v3G
29 470.27 21/16, 55/42 F𝄪, vvG
30 486.486 65/49 ^F𝄪, vG
31 502.703 4/3, 75/56 G
32 518.919 35/26 ^G, vA♭♭
33 535.135 15/11 ^^G, A♭♭
34 551.351 11/8 ^3G, v4A♭
35 567.568 39/28 ^4G, v3A♭
36 583.784 7/5, 45/32 G♯, vvA♭
37 600 55/39, 78/55 ^G♯, vA♭
38 616.216 10/7, 63/44, 64/45 ^^G♯, A♭
39 632.432 56/39, 75/52 ^3G♯, v4A
40 648.649 16/11 ^4G♯, v3A
41 664.865 22/15 G𝄪, vvA
42 681.081 52/35, 65/44, 77/52 ^G𝄪, vA
43 697.297 3/2 A
44 713.514 ^A, vB♭♭
45 729.73 32/21 ^^A, B♭♭
46 745.946 20/13, 77/50 ^3A, v4B♭
47 762.162 65/42 ^4A, v3B♭
48 778.378 11/7, 25/16 A♯, vvB♭
49 794.595 ^A♯, vB♭
50 810.811 8/5 ^^A♯, B♭
51 827.027 21/13 ^3A♯, v4B
52 843.243 13/8, 80/49 ^4A♯, v3B
53 859.459 64/39 A𝄪, vvB
54 875.676 ^A𝄪, vB
55 891.892 42/25 B
56 908.108 22/13 ^B, vC♭
57 924.324 75/44 ^^B, C♭
58 940.541 55/32 ^3B, v4C
59 956.757 26/15 ^4B, v3C
60 972.973 7/4, 44/25 B♯, vvC
61 989.189 39/22 ^B♯, vC
62 1005.405 25/14 C
63 1021.622 ^C, vD♭♭
64 1037.838 20/11 ^^C, D♭♭
65 1054.054 11/6 ^3C, v4D♭
66 1070.27 13/7 ^4C, v3D♭
67 1086.486 15/8, 28/15 C♯, vvD♭
68 1102.703 49/26 ^C♯, vD♭
69 1118.919 21/11, 40/21 ^^C♯, D♭
70 1135.135 25/13, 77/40 ^3C♯, v4D
71 1151.351 39/20, 64/33 ^4C♯, v3D
72 1167.568 49/25, 55/28, 63/32 C𝄪, vvD
73 1183.784 77/39 ^C𝄪, vD
74 1200 2/1 D

Music

Modern renderings

Scott Joplin

21st century

Claudi Meneghin