There are many conceivable ways to map 74edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. However, due to its size, this mapping does not cover all the notes, although this does not matter in many keys because lower limit harmonics are relatively close together, which opens the possibility that even modulation to remote keys might be accommodated in some cases by the use of Lumatone presets mapping different diatonic subsets of 74edo.
Diatonic
70
8
3
15
27
39
51
72
10
22
34
46
58
70
8
5
17
29
41
53
65
3
15
27
39
51
0
12
24
36
48
60
72
10
22
34
46
58
70
8
7
19
31
43
55
67
5
17
29
41
53
65
3
15
27
39
51
2
14
26
38
50
62
0
12
24
36
48
60
72
10
22
34
46
58
70
8
9
21
33
45
57
69
7
19
31
43
55
67
5
17
29
41
53
65
3
15
27
39
51
4
16
28
40
52
64
2
14
26
38
50
62
0
12
24
36
48
60
72
10
22
34
46
58
70
8
23
35
47
59
71
9
21
33
45
57
69
7
19
31
43
55
67
5
17
29
41
53
65
3
15
27
39
51
54
66
4
16
28
40
52
64
2
14
26
38
50
62
0
12
24
36
48
60
72
10
22
34
46
58
23
35
47
59
71
9
21
33
45
57
69
7
19
31
43
55
67
5
17
29
41
53
65
54
66
4
16
28
40
52
64
2
14
26
38
50
62
0
12
24
36
48
60
23
35
47
59
71
9
21
33
45
57
69
7
19
31
43
55
67
54
66
4
16
28
40
52
64
2
14
26
38
50
62
23
35
47
59
71
9
21
33
45
57
69
54
66
4
16
28
40
52
64
23
35
47
59
71
54
66
Semimeantone
The 2L 8s mapping covers the whole gamut as efficiently as possible in a span of three octaves, although notes 52, 58, 65 & 71-72 are missing from the otherwise full upper octave; octaves slope slightly upward.
68
0
7
13
19
25
31
14
20
26
32
38
44
50
56
27
33
39
45
51
57
63
69
1
7
13
34
40
46
52
58
64
70
2
8
14
20
26
32
38
47
53
59
65
71
3
9
15
21
27
33
39
45
51
57
63
69
54
60
66
72
4
10
16
22
28
34
40
46
52
58
64
70
2
8
14
20
67
73
5
11
17
23
29
35
41
47
53
59
65
71
3
9
15
21
27
33
39
45
51
0
6
12
18
24
30
36
42
48
54
60
66
72
4
10
16
22
28
34
40
46
52
58
64
70
2
19
25
31
37
43
49
55
61
67
73
5
11
17
23
29
35
41
47
53
59
65
71
3
9
15
21
27
33
44
50
56
62
68
0
6
12
18
24
30
36
42
48
54
60
66
72
4
10
16
22
28
34
40
46
1
7
13
19
25
31
37
43
49
55
61
67
73
5
11
17
23
29
35
41
47
53
59
26
32
38
44
50
56
62
68
0
6
12
18
24
30
36
42
48
54
60
66
57
63
69
1
7
13
19
25
31
37
43
49
55
61
67
73
5
8
14
20
26
32
38
44
50
56
62
68
0
6
12
39
45
51
57
63
69
1
7
13
19
25
64
70
2
8
14
20
26
32
21
27
33
39
45
46
52
Liese
The 2L 9s mapping is another option, especially if you don't mind using the second best mapping for some notes in larger chords; however, it skips some notes in all octaves, exacerbated in the lower and upper full octaves by the shear inherent in this layout.
27
31
46
50
54
58
62
61
65
69
73
3
7
11
15
6
10
14
18
22
26
30
34
38
42
46
21
25
29
33
37
41
45
49
53
57
61
65
69
73
40
44
48
52
56
60
64
68
72
2
6
10
14
18
22
26
30
55
59
63
67
71
1
5
9
13
17
21
25
29
33
37
41
45
49
53
57
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
2
6
10
14
15
19
23
27
31
35
39
43
47
51
55
59
63
67
71
1
5
9
13
17
21
25
29
33
37
41
38
42
46
50
54
58
62
66
70
0
4
8
12
16
20
24
28
32
36
40
44
48
52
56
60
64
68
72
65
69
73
3
7
11
15
19
23
27
31
35
39
43
47
51
55
59
63
67
71
1
5
9
13
17
22
26
30
34
38
42
46
50
54
58
62
66
70
0
4
8
12
16
20
24
28
32
36
49
53
57
61
65
69
73
3
7
11
15
19
23
27
31
35
39
43
47
51
6
10
14
18
22
26
30
34
38
42
46
50
54
58
62
66
70
33
37
41
45
49
53
57
61
65
69
73
3
7
11
64
68
72
2
6
10
14
18
22
26
30
17
21
25
29
33
37
41
45
48
52
56
60
64
1
5
Cantonismic-Werckismic rank-3 temperament
Bryan Deister has demonstrated the 7L 6s mapping of 74edo in microtonal improvisation in 74edo (2025). The rightward generator (8\74) functions as ~14/13; three of them make a classic major third ~5/4 (the cantonisma 10985/10976 is tempered out); five of them make an essentially-just undecimal subfifth ~16/11; and eight of them make a highly accurate undecimal supraminor seventh ~20/11. The upward generator (5\74) functions as ~21/20 and ~22/21 (the Werckisma (441/440 is tempered out); two of these make ~11/10; five of these make ~24/19 (which is distinguished from ~5/4); and eight of these make ~16/11. The range is about just over 3 octaves with no missing notes, and the octaves slope down and wrap around vertically.
4
12
7
15
23
31
39
2
10
18
26
34
42
50
58
5
13
21
29
37
45
53
61
69
3
11
0
8
16
24
32
40
48
56
64
72
6
14
22
30
3
11
19
27
35
43
51
59
67
1
9
17
25
33
41
49
57
72
6
14
22
30
38
46
54
62
70
4
12
20
28
36
44
52
60
68
2
1
9
17
25
33
41
49
57
65
73
7
15
23
31
39
47
55
63
71
5
13
21
29
70
4
12
20
28
36
44
52
60
68
2
10
18
26
34
42
50
58
66
0
8
16
24
32
40
48
7
15
23
31
39
47
55
63
71
5
13
21
29
37
45
53
61
69
3
11
19
27
35
43
51
59
67
1
26
34
42
50
58
66
0
8
16
24
32
40
48
56
64
72
6
14
22
30
38
46
54
62
70
4
53
61
69
3
11
19
27
35
43
51
59
67
1
9
17
25
33
41
49
57
65
73
7
72
6
14
22
30
38
46
54
62
70
4
12
20
28
36
44
52
60
68
2
25
33
41
49
57
65
73
7
15
23
31
39
47
55
63
71
5
44
52
60
68
2
10
18
26
34
42
50
58
66
0
71
5
13
21
29
37
45
53
61
69
3
16
24
32
40
48
56
64
72
43
51
59
67
1
62
70