Lumatone mapping for 72edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 72edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use either the second or third best alternate fifths, but they will not cover the full gamut or make the best-tuned intervals easily accessible.

Lumatone.svg
24
38
25
39
53
67
9
12
26
40
54
68
10
24
38
13
27
41
55
69
11
25
39
53
67
9
0
14
28
42
56
70
12
26
40
54
68
10
24
38
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
24
38
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
24
38
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
20
34
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
20
34
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
20
34
48
62
4
18
32
46
60
2
16
30
44
58
63
5
19
33
47
61
3
17
31
45
59
20
34
48
62
4
18
32
46
63
5
19
33
47
20
34
Lumatone.svg
48
58
59
69
7
17
27
60
70
8
18
28
38
48
58
71
9
19
29
39
49
59
69
7
17
27
0
10
20
30
40
50
60
70
8
18
28
38
48
58
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
48
58
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
48
58
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
4
14
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
4
14
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
4
14
24
34
44
54
64
2
12
22
32
42
52
62
45
55
65
3
13
23
33
43
53
63
1
4
14
24
34
44
54
64
2
45
55
65
3
13
4
14

Instead, the most efficient way to put the best-tuned intervals near each other while allowing access to all of them is the miracle mapping, although this does reduce the range to a little over three octaves.

Lumatone.svg
30
37
39
46
53
60
67
41
48
55
62
69
4
11
18
50
57
64
71
6
13
20
27
34
41
48
52
59
66
1
8
15
22
29
36
43
50
57
64
71
61
68
3
10
17
24
31
38
45
52
59
66
1
8
15
22
29
63
70
5
12
19
26
33
40
47
54
61
68
3
10
17
24
31
38
45
52
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
47
54
61
68
3
10
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
18
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
41
48
55
62
69
4
11
18
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
71
6
13
20
27
34
41
48
55
62
69
4
11
18
25
32
39
46
53
60
67
2
9
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
4
11
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
20
3
10
17
24
31
38
45
52
59
66
1
8
15
22
33
40
47
54
61
68
3
10
17
24
31
56
63
70
5
12
19
26
33
14
21
28
35
42
37
44

Slicing the period in half to produce semimiracle makes ratios of 13 & 17 just as easy to play as the 11-limit ones and also keeps octaves closer to horizontal.

Lumatone.svg
45
52
53
60
67
2
9
54
61
68
3
10
17
24
31
62
69
4
11
18
25
32
39
46
53
60
63
70
5
12
19
26
33
40
47
54
61
68
3
10
71
6
13
20
27
34
41
48
55
62
69
4
11
18
25
32
39
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
47
54
61
8
15
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
4
11
18
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
24
31
38
45
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
3
10
17
24
31
38
45
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
54
61
68
3
10
17
24
31
38
45
52
59
66
1
8
15
22
4
11
18
25
32
39
46
53
60
67
2
9
16
23
33
40
47
54
61
68
3
10
17
24
31
55
62
69
4
11
18
25
32
12
19
26
33
40
34
41


69edo70edo71edoLumatone mapping for 72edo73edo74edo75edo