Lumatone mapping for 72edo
Jump to navigation
Jump to search
There are many conceivable ways to map 72edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 5ths, the Standard Lumatone mapping for Pythagorean is not one of them. You can use either the second or third best alternate fifths, but they will not cover the full gamut or make the best-tuned intervals easily accessible.
24
38
25
39
53
67
9
12
26
40
54
68
10
24
38
13
27
41
55
69
11
25
39
53
67
9
0
14
28
42
56
70
12
26
40
54
68
10
24
38
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
24
38
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
24
38
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
25
39
53
67
9
20
34
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
12
26
40
54
68
10
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
13
27
41
55
69
11
20
34
48
62
4
18
32
46
60
2
16
30
44
58
0
14
28
42
56
70
63
5
19
33
47
61
3
17
31
45
59
1
15
29
43
57
71
20
34
48
62
4
18
32
46
60
2
16
30
44
58
63
5
19
33
47
61
3
17
31
45
59
20
34
48
62
4
18
32
46
63
5
19
33
47
20
34
48
58
59
69
7
17
27
60
70
8
18
28
38
48
58
71
9
19
29
39
49
59
69
7
17
27
0
10
20
30
40
50
60
70
8
18
28
38
48
58
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
48
58
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
48
58
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
59
69
7
17
27
4
14
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
60
70
8
18
28
38
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
71
9
19
29
39
49
4
14
24
34
44
54
64
2
12
22
32
42
52
62
0
10
20
30
40
50
45
55
65
3
13
23
33
43
53
63
1
11
21
31
41
51
61
4
14
24
34
44
54
64
2
12
22
32
42
52
62
45
55
65
3
13
23
33
43
53
63
1
4
14
24
34
44
54
64
2
45
55
65
3
13
4
14
Instead, the most efficient way to put the best-tuned intervals near each other while allowing access to all of them is the miracle mapping, although this does reduce the range to a little over three octaves.
30
37
39
46
53
60
67
41
48
55
62
69
4
11
18
50
57
64
71
6
13
20
27
34
41
48
52
59
66
1
8
15
22
29
36
43
50
57
64
71
61
68
3
10
17
24
31
38
45
52
59
66
1
8
15
22
29
63
70
5
12
19
26
33
40
47
54
61
68
3
10
17
24
31
38
45
52
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
47
54
61
68
3
10
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
18
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
41
48
55
62
69
4
11
18
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
71
6
13
20
27
34
41
48
55
62
69
4
11
18
25
32
39
46
53
60
67
2
9
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
4
11
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
20
3
10
17
24
31
38
45
52
59
66
1
8
15
22
33
40
47
54
61
68
3
10
17
24
31
56
63
70
5
12
19
26
33
14
21
28
35
42
37
44
Slicing the period in half to produce semimiracle makes ratios of 13 & 17 just as easy to play as the 11-limit ones and also keeps octaves closer to horizontal.
45
52
53
60
67
2
9
54
61
68
3
10
17
24
31
62
69
4
11
18
25
32
39
46
53
60
63
70
5
12
19
26
33
40
47
54
61
68
3
10
71
6
13
20
27
34
41
48
55
62
69
4
11
18
25
32
39
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
47
54
61
8
15
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
4
11
18
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
12
19
26
33
40
24
31
38
45
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
20
27
34
41
48
55
62
69
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
21
28
35
42
49
56
63
70
5
3
10
17
24
31
38
45
52
59
66
1
8
15
22
29
36
43
50
57
64
71
6
13
25
32
39
46
53
60
67
2
9
16
23
30
37
44
51
58
65
0
7
14
54
61
68
3
10
17
24
31
38
45
52
59
66
1
8
15
22
4
11
18
25
32
39
46
53
60
67
2
9
16
23
33
40
47
54
61
68
3
10
17
24
31
55
62
69
4
11
18
25
32
12
19
26
33
40
34
41