2L 8s

From Xenharmonic Wiki
Jump to navigation Jump to search
↖ 1L 7s ↑ 2L 7s 3L 7s ↗
← 1L 8s 2L 8s 3L 8s →
↙ 1L 9s ↓ 2L 9s 3L 9s ↘
┌╥┬┬┬┬╥┬┬┬┬┐
│║││││║│││││
││││││││││││
└┴┴┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern LssssLssss
ssssLssssL
Equave 2/1 (1200.0¢)
Period 1\2 (600.0¢)
Generator size
Bright 4\10 to 1\2 (480.0¢ to 600.0¢)
Dark 0\2 to 1\10 (0.0¢ to 120.0¢)
TAMNAMS information
Name jaric
Prefix jara-
Abbrev. ja
Related MOS scales
Parent 2L 6s
Sister 8L 2s
Daughters 10L 2s, 2L 10s
Neutralized 4L 6s
2-Flought 12L 8s, 2L 18s
Equal tunings
Equalized (L:s = 1:1) 4\10 (480.0¢)
Supersoft (L:s = 4:3) 13\32 (487.5¢)
Soft (L:s = 3:2) 9\22 (490.9¢)
Semisoft (L:s = 5:3) 14\34 (494.1¢)
Basic (L:s = 2:1) 5\12 (500.0¢)
Semihard (L:s = 5:2) 11\26 (507.7¢)
Hard (L:s = 3:1) 6\14 (514.3¢)
Superhard (L:s = 4:1) 7\16 (525.0¢)
Collapsed (L:s = 1:0) 1\2 (600.0¢)

2L 8s, named jaric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 8 small steps, with a period of 1 large step and 4 small steps that repeats every 600.0¢, or twice every octave. Generators that produce this scale range from 480¢ to 600¢, or from 0¢ to 120¢. 2L 8s is the MOS pattern of the decatonic scale of Paul Erlich and others.

The only significant harmonic entropy minimum that is proper is the decatonic scale itself (pajara[10]), in which the period is 7/5~10/7 (tempered to be the same interval), one generator down from that makes 4/3, and another generator down makes 5/4. More than a few people think this is a beautiful scale that deserves a lot of investigation and use, with some going so far as to say it's the next step up from the diatonic scale that preserves the most desirable features of diatonic melody and harmony. Paul Erlich's original paper on this scale can be found at either of these links:

http://sethares.engr.wisc.edu/paperspdf/Erlich-22.pdf

http://www.lumma.org/tuning/erlich/

Improper harmonic entropy minima include injera (which is similar to pajara except that 5/4 is now four generators up and no periods) and shrutar (which is basically pajara with the generator divided in two).

In addition to the true MOS form, LssssLssss, these scales also exist in a near-MOS form, LsssssLsss, in which the period is the only interval class with more than two flavors. In the case of the decatonic scale, LssssLssss is called the "symmetric" scale and LsssssLsss is called the "pentachordal" scale (because it has two identical "pentachords" in the same way that the diatonic scale has two identical tetrachords).

Intervals

Intervals of 2L 8s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-jarastep Perfect 0-jarastep P0jas 0 0.0¢
1-jarastep Perfect 1-jarastep P1jas s 0.0¢ to 120.0¢
Augmented 1-jarastep A1jas L 120.0¢ to 600.0¢
2-jarastep Minor 2-jarastep m2jas 2s 0.0¢ to 240.0¢
Major 2-jarastep M2jas L + s 240.0¢ to 600.0¢
3-jarastep Minor 3-jarastep m3jas 3s 0.0¢ to 360.0¢
Major 3-jarastep M3jas L + 2s 360.0¢ to 600.0¢
4-jarastep Diminished 4-jarastep d4jas 4s 0.0¢ to 480.0¢
Perfect 4-jarastep P4jas L + 3s 480.0¢ to 600.0¢
5-jarastep Perfect 5-jarastep P5jas L + 4s 600.0¢
6-jarastep Perfect 6-jarastep P6jas L + 5s 600.0¢ to 720.0¢
Augmented 6-jarastep A6jas 2L + 4s 720.0¢ to 1200.0¢
7-jarastep Minor 7-jarastep m7jas L + 6s 600.0¢ to 840.0¢
Major 7-jarastep M7jas 2L + 5s 840.0¢ to 1200.0¢
8-jarastep Minor 8-jarastep m8jas L + 7s 600.0¢ to 960.0¢
Major 8-jarastep M8jas 2L + 6s 960.0¢ to 1200.0¢
9-jarastep Diminished 9-jarastep d9jas L + 8s 600.0¢ to 1080.0¢
Perfect 9-jarastep P9jas 2L + 7s 1080.0¢ to 1200.0¢
10-jarastep Perfect 10-jarastep P10jas 2L + 8s 1200.0¢

Modes

Scale degrees of the modes of 2L 8s 
UDP Cyclic
order
Step
pattern
Scale degree (jaradegree)
0 1 2 3 4 5 6 7 8 9 10
8|0(2) 1 LssssLssss Perf. Aug. Maj. Maj. Perf. Perf. Aug. Maj. Maj. Perf. Perf.
6|2(2) 5 sLssssLsss Perf. Perf. Maj. Maj. Perf. Perf. Perf. Maj. Maj. Perf. Perf.
4|4(2) 4 ssLssssLss Perf. Perf. Min. Maj. Perf. Perf. Perf. Min. Maj. Perf. Perf.
2|6(2) 3 sssLssssLs Perf. Perf. Min. Min. Perf. Perf. Perf. Min. Min. Perf. Perf.
0|8(2) 2 ssssLssssL Perf. Perf. Min. Min. Dim. Perf. Perf. Min. Min. Dim. Perf.

Scale tree

Scale Tree and Tuning Spectrum of 2L 8s
Generator(edo) Cents Step ratio Comments
Bright Dark L:s Hardness
4\10 480.000 120.000 1:1 1.000 Equalized 2L 8s
21\52 484.615 115.385 6:5 1.200 Semimiracle
17\42 485.714 114.286 5:4 1.250
30\74 486.486 113.514 9:7 1.286
13\32 487.500 112.500 4:3 1.333 Supersoft 2L 8s
35\86 488.372 111.628 11:8 1.375
22\54 488.889 111.111 7:5 1.400
31\76 489.474 110.526 10:7 1.429
9\22 490.909 109.091 3:2 1.500 Soft 2L 8s
Pajara
32\78 492.308 107.692 11:7 1.571
23\56 492.857 107.143 8:5 1.600 Keen
37\90 493.333 106.667 13:8 1.625
14\34 494.118 105.882 5:3 1.667 Semisoft 2L 8s
33\80 495.000 105.000 12:7 1.714 Srutal
19\46 495.652 104.348 7:4 1.750
24\58 496.552 103.448 9:5 1.800 Diaschismic
5\12 500.000 100.000 2:1 2.000 Basic 2L 8s
Scales with tunings softer than this are proper
21\50 504.000 96.000 9:4 2.250 Bimeantone
16\38 505.263 94.737 7:3 2.333
27\64 506.250 93.750 12:5 2.400
11\26 507.692 92.308 5:2 2.500 Semihard 2L 8s
Injera
28\66 509.091 90.909 13:5 2.600
17\40 510.000 90.000 8:3 2.667
23\54 511.111 88.889 11:4 2.750
6\14 514.286 85.714 3:1 3.000 Hard 2L 8s
19\44 518.182 81.818 10:3 3.333
13\30 520.000 80.000 7:2 3.500
20\46 521.739 78.261 11:3 3.667
7\16 525.000 75.000 4:1 4.000 Superhard 2L 8s
15\34 529.412 70.588 9:2 4.500 Vishnu (incomplete)
8\18 533.333 66.667 5:1 5.000
9\20 540.000 60.000 6:1 6.000 Shrutar, teff/pombe (incomplete)↓
1\2 600.000 0.000 1:0 → ∞ Collapsed 2L 8s