8L 2s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLsLLLLs
sLLLLsLLLL
Equave
2/1 (1200.0¢)
Period
1\2 (600.0¢)
Generator size
Bright
1\10 to 1\8 (120.0¢ to 150.0¢)
Dark
3\8 to 4\10 (450.0¢ to 480.0¢)
TAMNAMS information
Name
taric
Prefix
tara-
Abbrev.
ta
Related MOS scales
Parent
2L 6s
Sister
2L 8s
Daughters
10L 8s, 8L 10s
Neutralized
6L 4s
2-Flought
18L 2s, 8L 12s
Equal tunings
Equalized (L:s = 1:1)
1\10 (120.0¢)
Supersoft (L:s = 4:3)
4\38 (126.3¢)
Soft (L:s = 3:2)
3\28 (128.6¢)
Semisoft (L:s = 5:3)
5\46 (130.4¢)
Basic (L:s = 2:1)
2\18 (133.3¢)
Semihard (L:s = 5:2)
5\44 (136.4¢)
Hard (L:s = 3:1)
3\26 (138.5¢)
Superhard (L:s = 4:1)
4\34 (141.2¢)
Collapsed (L:s = 1:0)
1\8 (150.0¢)
↖ 7L 1s | ↑ 8L 1s | 9L 1s ↗ |
← 7L 2s | 8L 2s | 9L 2s → |
↙ 7L 3s | ↓ 8L 3s | 9L 3s ↘ |
┌╥╥╥╥┬╥╥╥╥┬┐ │║║║║│║║║║││ ││││││││││││ └┴┴┴┴┴┴┴┴┴┴┘
sLLLLsLLLL
8L 2s, named taric in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 8 large steps and 2 small steps, with a period of 4 large steps and 1 small step that repeats every 600.0¢, or twice every octave. Generators that produce this scale range from 120¢ to 150¢, or from 450¢ to 480¢. Scales of the true MOS form, where every period is the same, are proper because there is only one small step per period.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-tarastep | Perfect 0-tarastep | P0tas | 0 | 0.0¢ |
1-tarastep | Diminished 1-tarastep | d1tas | s | 0.0¢ to 120.0¢ |
Perfect 1-tarastep | P1tas | L | 120.0¢ to 150.0¢ | |
2-tarastep | Minor 2-tarastep | m2tas | L + s | 150.0¢ to 240.0¢ |
Major 2-tarastep | M2tas | 2L | 240.0¢ to 300.0¢ | |
3-tarastep | Minor 3-tarastep | m3tas | 2L + s | 300.0¢ to 360.0¢ |
Major 3-tarastep | M3tas | 3L | 360.0¢ to 450.0¢ | |
4-tarastep | Perfect 4-tarastep | P4tas | 3L + s | 450.0¢ to 480.0¢ |
Augmented 4-tarastep | A4tas | 4L | 480.0¢ to 600.0¢ | |
5-tarastep | Perfect 5-tarastep | P5tas | 4L + s | 600.0¢ |
6-tarastep | Diminished 6-tarastep | d6tas | 4L + 2s | 600.0¢ to 720.0¢ |
Perfect 6-tarastep | P6tas | 5L + s | 720.0¢ to 750.0¢ | |
7-tarastep | Minor 7-tarastep | m7tas | 5L + 2s | 750.0¢ to 840.0¢ |
Major 7-tarastep | M7tas | 6L + s | 840.0¢ to 900.0¢ | |
8-tarastep | Minor 8-tarastep | m8tas | 6L + 2s | 900.0¢ to 960.0¢ |
Major 8-tarastep | M8tas | 7L + s | 960.0¢ to 1050.0¢ | |
9-tarastep | Perfect 9-tarastep | P9tas | 7L + 2s | 1050.0¢ to 1080.0¢ |
Augmented 9-tarastep | A9tas | 8L + s | 1080.0¢ to 1200.0¢ | |
10-tarastep | Perfect 10-tarastep | P10tas | 8L + 2s | 1200.0¢ |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (taradegree) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
8|0(2) | 1 | LLLLsLLLLs | Perf. | Perf. | Maj. | Maj. | Aug. | Perf. | Perf. | Maj. | Maj. | Aug. | Perf. |
6|2(2) | 2 | LLLsLLLLsL | Perf. | Perf. | Maj. | Maj. | Perf. | Perf. | Perf. | Maj. | Maj. | Perf. | Perf. |
4|4(2) | 3 | LLsLLLLsLL | Perf. | Perf. | Maj. | Min. | Perf. | Perf. | Perf. | Maj. | Min. | Perf. | Perf. |
2|6(2) | 4 | LsLLLLsLLL | Perf. | Perf. | Min. | Min. | Perf. | Perf. | Perf. | Min. | Min. | Perf. | Perf. |
0|8(2) | 5 | sLLLLsLLLL | Perf. | Dim. | Min. | Min. | Perf. | Perf. | Dim. | Min. | Min. | Perf. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments(always proper) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
1\10 | 120.000 | 480.000 | 1:1 | 1.000 | Equalized 8L 2s | |||||
6\58 | 124.138 | 475.862 | 6:5 | 1.200 | Quadrasruta (sagugu&bizozogu) | |||||
5\48 | 125.000 | 475.000 | 5:4 | 1.250 | ||||||
9\86 | 125.581 | 474.419 | 9:7 | 1.286 | ||||||
4\38 | 126.316 | 473.684 | 4:3 | 1.333 | Supersoft 8L 2s | |||||
11\104 | 126.923 | 473.077 | 11:8 | 1.375 | ||||||
7\66 | 127.273 | 472.727 | 7:5 | 1.400 | ||||||
10\94 | 127.660 | 472.340 | 10:7 | 1.429 | ||||||
3\28 | 128.571 | 471.429 | 3:2 | 1.500 | Soft 8L 2s | |||||
11\102 | 129.412 | 470.588 | 11:7 | 1.571 | ||||||
8\74 | 129.730 | 470.270 | 8:5 | 1.600 | ||||||
13\120 | 130.000 | 470.000 | 13:8 | 1.625 | Golden taric (129.9254¢) | |||||
5\46 | 130.435 | 469.565 | 5:3 | 1.667 | Semisoft 8L 2s | |||||
12\110 | 130.909 | 469.091 | 12:7 | 1.714 | ||||||
7\64 | 131.250 | 468.750 | 7:4 | 1.750 | ||||||
9\82 | 131.707 | 468.293 | 9:5 | 1.800 | ||||||
2\18 | 133.333 | 466.667 | 2:1 | 2.000 | Basic 8L 2s Octokaidecal is around here | |||||
9\80 | 135.000 | 465.000 | 9:4 | 2.250 | ||||||
7\62 | 135.484 | 464.516 | 7:3 | 2.333 | ||||||
12\106 | 135.849 | 464.151 | 12:5 | 2.400 | ||||||
5\44 | 136.364 | 463.636 | 5:2 | 2.500 | Semihard 8L 2s | |||||
13\114 | 136.842 | 463.158 | 13:5 | 2.600 | ||||||
8\70 | 137.143 | 462.857 | 8:3 | 2.667 | ||||||
11\96 | 137.500 | 462.500 | 11:4 | 2.750 | ||||||
3\26 | 138.462 | 461.538 | 3:1 | 3.000 | Hard 8L 2s | |||||
10\86 | 139.535 | 460.465 | 10:3 | 3.333 | ||||||
7\60 | 140.000 | 460.000 | 7:2 | 3.500 | Fifives/crepuscular | |||||
11\94 | 140.426 | 459.574 | 11:3 | 3.667 | ||||||
4\34 | 141.176 | 458.824 | 4:1 | 4.000 | Superhard 8L 2s | |||||
9\76 | 142.105 | 457.895 | 9:2 | 4.500 | ||||||
5\42 | 142.857 | 457.143 | 5:1 | 5.000 | ||||||
6\50 | 144.000 | 456.000 | 6:1 | 6.000 | Bisemidim | |||||
1\8 | 150.000 | 450.000 | 1:0 | → ∞ | Collapsed 8L 2s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |