82edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 81edo 82edo 83edo →
Prime factorization 2 × 41
Step size 14.6341¢ 
Fifth 48\82 (702.439¢) (→24\41)
Semitones (A1:m2) 8:6 (117.1¢ : 87.8¢)
Consistency limit 9
Distinct consistency limit 9

82 equal divisions of the octave (abbreviated 82edo or 82ed2), also called 82-tone equal temperament (82tet) or 82 equal temperament (82et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 82 equal parts of about 14.6 ¢ each. Each step represents a frequency ratio of 21/82, or the 82nd root of 2.

Theory

82edo's patent val is contorted in the 11-limit, since 82 = 2 × 41. In the 13-limit the patent val tempers out 169/168 and 676/675, and in the 17-limit tempers out 273/272. It provides the optimal patent val for soothsaying temperament and supports baladic temperament. The 82d val tempers out 50/49 and is an excellent tuning for astrology and byhearted, surpassing their optimal patent vals. The alternative 82e val tempers out 121/120 instead.

Prime harmonics

Approximation of prime harmonics in 82edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +0.48 -5.83 -2.97 +4.78 -6.38 -2.52 -4.83 +0.99 -5.19 -3.57
Relative (%) +0.0 +3.3 -39.8 -20.3 +32.7 -43.6 -17.2 -33.0 +6.8 -35.4 -24.4
Steps
(reduced)
82
(0)
130
(48)
190
(26)
230
(66)
284
(38)
303
(57)
335
(7)
348
(20)
371
(43)
398
(70)
406
(78)

Subsets and supersets

82edo contains 2edo and 41edo as subsets. 164edo, which doubles it, is a notable tuning.

A step of 82edo is exactly 30 minas.

Intervals

# Cents Approximate ratios* Additional ratios
Using the 82e val Using the patent val
0 0.000 1/1 1/1 1/1
1 14.634 65/64, 91/90 55/54
2 29.268 49/48, 50/49, 81/80, 126/125 45/44, 55/54
3 43.902 40/39 33/32, 45/44
4 58.537 25/24, 28/27, 36/35 33/32
5 73.171 26/25, 27/26 22/21
6 87.805 19/18, 20/19, 21/20 22/21
7 102.439 17/16, 18/17
8 117.073 15/14, 16/15
9 131.707 14/13, 13/12
10 146.341 12/11
11 160.976 11/10, 12/11
12 175.610 10/9, 21/19 11/10
13 190.244 19/17
14 204.878 9/8
15 219.512 17/15
16 234.146 8/7
17 248.780 15/13 22/19
18 263.415 7/6 22/19
19 278.049 20/17 13/11
20 292.683 19/16 13/11
21 307.317
22 321.951 6/5
23 336.585 17/14 11/9
24 351.220 11/9
25 365.854 16/13, 21/17, 26/21
26 380.488 5/4
27 395.122
28 409.756 19/15, 24/19 14/11
29 424.390 14/11
30 439.024 9/7 22/17
31 453.659 13/10 22/17
32 468.293 17/13, 21/16
33 482.927
34 497.561 4/3
35 512.195
36 526.829 19/14 15/11
37 541.463 26/19 11/8, 15/11
38 556.098 11/8
39 570.732 18/13
40 585.366 7/5
41 600.000 17/12, 24/17

* As a no-11 19-limit temperament

Notation

Ups and downs notation

60edo can be notated using ups and downs notation using Helmholtz–Ellis accidentals:

Step offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sharp symbol
Heji18.svg
Heji19.svg
Heji20.svg
Heji21.svg
HeQu1.svg
Heji22.svg
Heji23.svg
Heji24.svg
Heji25.svg
Heji26.svg
Heji27.svg
Heji28.svg
HeQu3.svg
Heji29.svg
Heji30.svg
Heji31.svg
Heji32.svg
Heji33.svg
Heji34.svg
Heji35.svg
Flat symbol
Heji17.svg
Heji16.svg
Heji15.svg
HeQd1.svg
Heji14.svg
Heji13.svg
Heji12.svg
Heji11.svg
Heji10.svg
Heji9.svg
Heji8.svg
HeQd3.svg
Heji7.svg
Heji6.svg
Heji5.svg
Heji4.svg
Heji3.svg
Heji2.svg
Heji1.svg

Approximation to JI

Zeta peak index

Tuning Strength Closest edo Integer limit
ZPI Steps per octave Step size (cents) Height Integral Gap Edo Octave (cents) Consistent Distinct
448zpi 81.9541455954050 14.6423343356444 6.653983 0.941321 14.718732 82edo 1200.67141552284 8 8