83edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 82edo 83edo 84edo →
Prime factorization 83 (prime)
Step size 14.4578¢ 
Fifth 49\83 (708.434¢)
Semitones (A1:m2) 11:4 (159¢ : 57.83¢)
Dual sharp fifth 49\83 (708.434¢)
Dual flat fifth 48\83 (693.976¢)
Dual major 2nd 14\83 (202.41¢)
Consistency limit 7
Distinct consistency limit 7

83 equal divisions of the octave (abbreviated 83edo or 83ed2), also called 83-tone equal temperament (83tet) or 83 equal temperament (83et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 83 equal parts of about 14.5 ¢ each. Each step represents a frequency ratio of 21/83, or the 83rd root of 2.

Theory

The harmonic 3 is 6.5 cents sharp and the 5 is 4 cents sharp, with 7, 11, and 13 more accurate but a little flat. Using the patent val, it tempers out 15625/15552 in the 5-limit and 686/675, 4000/3969 and 6144/6125 in the 7-limit, and provides the optimal patent val for the 7-limit 27 & 56 temperament with wedgie ⟨⟨ 5 18 17 17 13 -11 ]]. In the 11-limit it tempers out 121/120, 176/175 and 385/384, and in the 13-limit 91/90, 169/168 and 196/195, and it provides the optimal patent val for the 11-limit 22 & 61 temperament and the 13-limit 15 & 83 temperament.

Every odd harmonic between the 7th and the 17th is tuned flatly. As a consequence, this tuning provides a good approximation of the 7:9:11:13:15:17 hexad, and especially of the 9:11:13 triad.

Odd harmonics

Approximation of odd harmonics in 83edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +6.48 +4.05 -0.15 -1.50 -1.92 -1.97 -3.93 -3.75 +6.10 +6.33 -6.59
Relative (%) +44.8 +28.0 -1.0 -10.4 -13.3 -13.6 -27.2 -25.9 +42.2 +43.8 -45.6
Steps
(reduced)
132
(49)
193
(27)
233
(67)
263
(14)
287
(38)
307
(58)
324
(75)
339
(7)
353
(21)
365
(33)
375
(43)

Subsets and supersets

83edo is the 23rd prime edo, following 79edo and before 89edo.

Intervals

Steps Cents Approximate ratios Ups and downs notation
(Dual flat fifth 48\83)
Ups and downs notation
(Dual sharp fifth 49\83)
0 0 1/1 D D
1 14.458 ^D, E♭♭♭ ^D, v3E♭
2 28.916 ^^D, v3E♭♭ ^^D, vvE♭
3 43.373 39/38, 40/39 ^3D, vvE♭♭ ^3D, vE♭
4 57.831 29/28, 32/31 D♯, vE♭♭ ^4D, E♭
5 72.289 25/24 ^D♯, E♭♭ ^5D, v10E
6 86.747 20/19, 21/20 ^^D♯, v3E♭ ^6D, v9E
7 101.205 35/33 ^3D♯, vvE♭ ^7D, v8E
8 115.663 31/29 D𝄪, vE♭ ^8D, v7E
9 130.12 14/13 ^D𝄪, E♭ ^9D, v6E
10 144.578 37/34, 38/35 ^^D𝄪, v3E ^10D, v5E
11 159.036 34/31 ^3D𝄪, vvE D♯, v4E
12 173.494 21/19, 31/28, 32/29 D♯𝄪, vE ^D♯, v3E
13 187.952 29/26, 39/35 E ^^D♯, vvE
14 202.41 ^E, F♭♭ ^3D♯, vE
15 216.867 ^^E, v3F♭ E
16 231.325 8/7 ^3E, vvF♭ ^E, v3F
17 245.783 38/33 E♯, vF♭ ^^E, vvF
18 260.241 ^E♯, F♭ ^3E, vF
19 274.699 34/29 ^^E♯, v3F F
20 289.157 13/11 ^3E♯, vvF ^F, v3G♭
21 303.614 25/21, 31/26, 37/31 E𝄪, vF ^^F, vvG♭
22 318.072 6/5 F ^3F, vG♭
23 332.53 40/33 ^F, G♭♭♭ ^4F, G♭
24 346.988 ^^F, v3G♭♭ ^5F, v10G
25 361.446 16/13 ^3F, vvG♭♭ ^6F, v9G
26 375.904 F♯, vG♭♭ ^7F, v8G
27 390.361 ^F♯, G♭♭ ^8F, v7G
28 404.819 24/19 ^^F♯, v3G♭ ^9F, v6G
29 419.277 14/11, 37/29 ^3F♯, vvG♭ ^10F, v5G
30 433.735 F𝄪, vG♭ F♯, v4G
31 448.193 22/17 ^F𝄪, G♭ ^F♯, v3G
32 462.651 17/13 ^^F𝄪, v3G ^^F♯, vvG
33 477.108 25/19, 29/22 ^3F𝄪, vvG ^3F♯, vG
34 491.566 F♯𝄪, vG G
35 506.024 G ^G, v3A♭
36 520.482 23/17 ^G, A♭♭♭ ^^G, vvA♭
37 534.94 ^^G, v3A♭♭ ^3G, vA♭
38 549.398 11/8 ^3G, vvA♭♭ ^4G, A♭
39 563.855 G♯, vA♭♭ ^5G, v10A
40 578.313 ^G♯, A♭♭ ^6G, v9A
41 592.771 31/22 ^^G♯, v3A♭ ^7G, v8A
42 607.229 ^3G♯, vvA♭ ^8G, v7A
43 621.687 G𝄪, vA♭ ^9G, v6A
44 636.145 ^G𝄪, A♭ ^10G, v5A
45 650.602 16/11, 35/24 ^^G𝄪, v3A G♯, v4A
46 665.06 ^3G𝄪, vvA ^G♯, v3A
47 679.518 34/23 G♯𝄪, vA ^^G♯, vvA
48 693.976 A ^3G♯, vA
49 708.434 ^A, B♭♭♭ A
50 722.892 38/25 ^^A, v3B♭♭ ^A, v3B♭
51 737.349 26/17 ^3A, vvB♭♭ ^^A, vvB♭
52 751.807 17/11 A♯, vB♭♭ ^3A, vB♭
53 766.265 ^A♯, B♭♭ ^4A, B♭
54 780.723 11/7 ^^A♯, v3B♭ ^5A, v10B
55 795.181 19/12 ^3A♯, vvB♭ ^6A, v9B
56 809.639 A𝄪, vB♭ ^7A, v8B
57 824.096 37/23 ^A𝄪, B♭ ^8A, v7B
58 838.554 13/8 ^^A𝄪, v3B ^9A, v6B
59 853.012 ^3A𝄪, vvB ^10A, v5B
60 867.47 33/20 A♯𝄪, vB A♯, v4B
61 881.928 5/3 B ^A♯, v3B
62 896.386 ^B, C♭♭ ^^A♯, vvB
63 910.843 22/13 ^^B, v3C♭ ^3A♯, vB
64 925.301 29/17 ^3B, vvC♭ B
65 939.759 B♯, vC♭ ^B, v3C
66 954.217 33/19 ^B♯, C♭ ^^B, vvC
67 968.675 7/4 ^^B♯, v3C ^3B, vC
68 983.133 ^3B♯, vvC C
69 997.59 B𝄪, vC ^C, v3D♭
70 1012.048 C ^^C, vvD♭
71 1026.506 29/16, 38/21 ^C, D♭♭♭ ^3C, vD♭
72 1040.964 31/17 ^^C, v3D♭♭ ^4C, D♭
73 1055.422 35/19 ^3C, vvD♭♭ ^5C, v10D
74 1069.88 13/7 C♯, vD♭♭ ^6C, v9D
75 1084.337 ^C♯, D♭♭ ^7C, v8D
76 1098.795 ^^C♯, v3D♭ ^8C, v7D
77 1113.253 19/10, 40/21 ^3C♯, vvD♭ ^9C, v6D
78 1127.711 C𝄪, vD♭ ^10C, v5D
79 1142.169 31/16 ^C𝄪, D♭ C♯, v4D
80 1156.627 39/20 ^^C𝄪, v3D ^C♯, v3D
81 1171.084 ^3C𝄪, vvD ^^C♯, vvD
82 1185.542 C♯𝄪, vD ^3C♯, vD
83 1200 2/1 D D