79edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 78edo 79edo 80edo →
Prime factorization 79 (prime)
Step size 15.1899¢ 
Fifth 46\79 (698.734¢)
Semitones (A1:m2) 6:7 (91.14¢ : 106.3¢)
Consistency limit 5
Distinct consistency limit 5

79 equal divisions of the octave (abbreviated 79edo or 79ed2), also called 79-tone equal temperament (79tet) or 79 equal temperament (79et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 79 equal parts of about 15.2 ¢ each. Each step represents a frequency ratio of 21/79, or the 79th root of 2.

Theory

79edo works well as a no-7 13- or 17-limit tuning. It is in fact consistent in the no-7 13-odd-limit.

Using the patent val, it tempers out 3125/3072 in the 5-limit, 1728/1715, 4000/3969 and 4375/4374 in the 7-limit, 99/98, 243/242, 385/384, 1331/1323, and 4000/3993 in the 11-limit, and 169/168, 275/273, 325/324, 351/350, 640/637, 1188/1183, 1575/1573, 2080/2079, and 2200/2197 in the 13-limit. It provides the optimal patent val for the sentinel temperament.

The 79c val supports meantone with a tuning very close to 1/7-comma.

Odd harmonics

Approximation of odd harmonics in 79edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -3.22 -6.57 +3.33 -6.44 -4.48 -5.08 +5.40 +1.37 +6.28 +0.11 -5.49
Relative (%) -21.2 -43.2 +21.9 -42.4 -29.5 -33.5 +35.6 +9.0 +41.4 +0.7 -36.1
Steps
(reduced)
125
(46)
183
(25)
222
(64)
250
(13)
273
(36)
292
(55)
309
(72)
323
(7)
336
(20)
347
(31)
357
(41)

Subsets and supersets

79edo is the 22nd prime edo, past 73edo and before 83edo.

Miscellany

79edo adequately represents the Decaononic way of playing, as 79edo misses 9/8 while having a near-perfect representation of 10/9 as 12\79. A maximal evenness variant of such a scale can be generated by naively stacking six 12edo diatonic majors and one Lydian tetrachord⁠ ⁠[clarification needed]. Since the final tetrachord does not have a 2nd degree, this results in 6 II's stretched over 6 + 7/12 octaves, which is just enough to make the log2 of the number to be equal to 10/9⁠ ⁠[clarification needed]. From a regular temperament theory perspective, these scales are a part of the bluebirds temperament.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 15.2 ^D, E♭♭
2 30.4 ^^D, ^E♭♭
3 45.6 36/35, 38/37 ^3D, ^^E♭♭
4 60.8 29/28 vvD♯, v3E♭
5 75.9 23/22, 24/23 vD♯, vvE♭
6 91.1 D♯, vE♭
7 106.3 17/16, 33/31 ^D♯, E♭
8 121.5 ^^D♯, ^E♭
9 136.7 13/12 ^3D♯, ^^E♭
10 151.9 12/11, 35/32 vvD𝄪, v3E
11 167.1 11/10 vD𝄪, vvE
12 182.3 10/9 D𝄪, vE
13 197.5 E
14 212.7 26/23, 35/31 ^E, F♭
15 227.8 ^^E, ^F♭
16 243 23/20 ^3E, ^^F♭
17 258.2 36/31 vvE♯, v3F
18 273.4 34/29 vE♯, vvF
19 288.6 13/11 E♯, vF
20 303.8 31/26 F
21 319 ^F, G♭♭
22 334.2 17/14 ^^F, ^G♭♭
23 349.4 11/9 ^3F, ^^G♭♭
24 364.6 21/17 vvF♯, v3G♭
25 379.7 vF♯, vvG♭
26 394.9 39/31 F♯, vG♭
27 410.1 33/26 ^F♯, G♭
28 425.3 23/18 ^^F♯, ^G♭
29 440.5 31/24 ^3F♯, ^^G♭
30 455.7 13/10 vvF𝄪, v3G
31 470.9 21/16, 38/29 vF𝄪, vvG
32 486.1 F𝄪, vG
33 501.3 4/3 G
34 516.5 27/20, 31/23, 35/26 ^G, A♭♭
35 531.6 19/14 ^^G, ^A♭♭
36 546.8 ^3G, ^^A♭♭
37 562 18/13, 29/21 vvG♯, v3A♭
38 577.2 vG♯, vvA♭
39 592.4 31/22 G♯, vA♭
40 607.6 ^G♯, A♭
41 622.8 33/23 ^^G♯, ^A♭
42 638 13/9 ^3G♯, ^^A♭
43 653.2 35/24 vvG𝄪, v3A
44 668.4 28/19 vG𝄪, vvA
45 683.5 G𝄪, vA
46 698.7 3/2 A
47 713.9 ^A, B♭♭
48 729.1 29/19, 32/21, 35/23 ^^A, ^B♭♭
49 744.3 20/13 ^3A, ^^B♭♭
50 759.5 31/20 vvA♯, v3B♭
51 774.7 36/23 vA♯, vvB♭
52 789.9 A♯, vB♭
53 805.1 35/22 ^A♯, B♭
54 820.3 ^^A♯, ^B♭
55 835.4 34/21 ^3A♯, ^^B♭
56 850.6 18/11 vvA𝄪, v3B
57 865.8 28/17, 33/20 vA𝄪, vvB
58 881 A𝄪, vB
59 896.2 B
60 911.4 22/13, 39/23 ^B, C♭
61 926.6 29/17 ^^B, ^C♭
62 941.8 31/18 ^3B, ^^C♭
63 957 vvB♯, v3C
64 972.2 vB♯, vvC
65 987.3 23/13 B♯, vC
66 1002.5 C
67 1017.7 9/5 ^C, D♭♭
68 1032.9 20/11 ^^C, ^D♭♭
69 1048.1 11/6 ^3C, ^^D♭♭
70 1063.3 24/13 vvC♯, v3D♭
71 1078.5 vC♯, vvD♭
72 1093.7 32/17 C♯, vD♭
73 1108.9 ^C♯, D♭
74 1124.1 23/12 ^^C♯, ^D♭
75 1139.2 ^3C♯, ^^D♭
76 1154.4 35/18, 37/19, 39/20 vvC𝄪, v3D
77 1169.6 vC𝄪, vvD
78 1184.8 C𝄪, vD
79 1200 2/1 D

Regular temperament properties

79edo supports the bluebirds temperament. It also supports oceanfront, meantone and sentinel.

Scales

Mos scales

  • Bluebirds[6, 7, 13, 20, 33…]
  • Meantone[7, 12, 19, 31…]
  • Oceanfront[7, 12, 17, 22, 27…]
  • Sentinel[5, 8, 11, 14, 17, 31…]

Others

  • Meantone Minor Hexatonic: 13 7 13 13 20 13 ((13, 20, 33, 46, 66, 79)\79)

Music

Francium
Silence and Secrecy (Julian Malerman)