89edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 88edo 89edo 90edo →
Prime factorization 89 (prime)
Step size 13.4831¢ 
Fifth 52\89 (701.124¢)
Semitones (A1:m2) 8:7 (107.9¢ : 94.38¢)
Consistency limit 11
Distinct consistency limit 11

89 equal divisions of the octave (abbreviated 89edo or 89ed2), also called 89-tone equal temperament (89tet) or 89 equal temperament (89et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 89 equal parts of about 13.5 ¢ each. Each step represents a frequency ratio of 21/89, or the 89th root of 2.

Theory

89edo has a harmonic 3 less than a cent flat and a harmonic 5 less than five cents sharp, with a 7 two cents sharp and an 11 1.5 cents sharp. It thus delivers reasonably good 11-limit harmony and very good no-fives harmony along with the very useful approximations represented by its commas. On a related note, a notable characteristic of this edo is that it is the lowest in a series of four consecutive edos to temper out quartisma.

It tempers out 32805/32768 (schisma) in the 5-limit; 126/125, 1728/1715, and 2401/2400 in the 7-limit; and 176/175, 243/242, 441/440 and 540/539 in the 11-limit. It is an especially good tuning for the myna temperament, both in the 7-limit, tempering out 126/125 and 1728/1715, and in the 11-limit, where 176/175 is tempered out also. It is likewise a good tuning for the rank-3 temperament thrush, tempering out 126/125 and 176/175.

The 13-limit is a little tricky as 13 is tuned distinctly flat, tempering out 169/168, 364/363, 729/728, 832/825, and 1287/1280. 13/10 and 15/13 are particularly out of tune in this system, each being about 9 cents off. The alternative 89f val fixes that but tunes 13/8 much sharper, conflating it with 18/11. It tempers out 144/143, 196/195, 351/350, and 352/351 instead, and supports 13-limit myna and thrush. However, 58edo is a better tuning for those purposes.

The 17 and 19 are tuned fairly well, making it consistent to the no-13 21-odd-limit. The equal temperament tempers out 256/255 and 561/560 in the 17-limit; and 171/170, 361/360, 513/512, and 1216/1215 in the 19-limit.

89edo is the 11th in the Fibonacci sequence, which means its 55th step approximates logarithmic φ (i.e. 1200(φ − 1) ¢ within a fraction of a cent.

Prime harmonics

Approximation of prime harmonics in 89edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 -0.83 +4.70 +1.96 +1.49 -4.57 +2.91 -0.88 +5.43 -4.86 +1.03
Relative (%) +0.0 -6.2 +34.8 +14.5 +11.1 -33.9 +21.6 -6.6 +40.3 -36.0 +7.7
Steps
(reduced)
89
(0)
141
(52)
207
(29)
250
(72)
308
(41)
329
(62)
364
(8)
378
(22)
403
(47)
432
(76)
441
(85)

Subsets and supersets

89edo is the 24th prime edo, following 83edo and before 97edo.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 13.5 ^D, ^^E♭♭
2 27 ^^D, ^3E♭♭
3 40.4 41/40, 42/41 ^3D, v4E♭
4 53.9 31/30, 32/31, 33/32, 34/33 ^4D, v3E♭
5 67.4 27/26 v3D♯, vvE♭
6 80.9 22/21 vvD♯, vE♭
7 94.4 19/18, 37/35 vD♯, E♭
8 107.9 33/31 D♯, ^E♭
9 121.3 15/14, 29/27 ^D♯, ^^E♭
10 134.8 40/37 ^^D♯, ^3E♭
11 148.3 12/11, 37/34 ^3D♯, v4E
12 161.8 34/31 ^4D♯, v3E
13 175.3 21/19, 31/28, 41/37 v3D𝄪, vvE
14 188.8 29/26 vvD𝄪, vE
15 202.2 9/8 E
16 215.7 17/15 ^E, ^^F♭
17 229.2 8/7 ^^E, ^3F♭
18 242.7 23/20, 38/33 ^3E, v4F
19 256.2 22/19, 36/31 ^4E, v3F
20 269.7 7/6 v3E♯, vvF
21 283.1 20/17, 33/28 vvE♯, vF
22 296.6 19/16, 32/27 F
23 310.1 ^F, ^^G♭♭
24 323.6 41/34 ^^F, ^3G♭♭
25 337.1 17/14 ^3F, v4G♭
26 350.6 38/31 ^4F, v3G♭
27 364 21/17, 37/30 v3F♯, vvG♭
28 377.5 41/33 vvF♯, vG♭
29 391 vF♯, G♭
30 404.5 24/19 F♯, ^G♭
31 418 14/11 ^F♯, ^^G♭
32 431.5 41/32 ^^F♯, ^3G♭
33 444.9 22/17, 31/24 ^3F♯, v4G
34 458.4 30/23 ^4F♯, v3G
35 471.9 21/16 v3F𝄪, vvG
36 485.4 41/31 vvF𝄪, vG
37 498.9 4/3 G
38 512.4 39/29 ^G, ^^A♭♭
39 525.8 23/17, 42/31 ^^G, ^3A♭♭
40 539.3 15/11, 41/30 ^3G, v4A♭
41 552.8 11/8 ^4G, v3A♭
42 566.3 v3G♯, vvA♭
43 579.8 7/5 vvG♯, vA♭
44 593.3 31/22, 38/27 vG♯, A♭
45 606.7 27/19 G♯, ^A♭
46 620.2 10/7 ^G♯, ^^A♭
47 633.7 ^^G♯, ^3A♭
48 647.2 16/11 ^3G♯, v4A
49 660.7 22/15, 41/28 ^4G♯, v3A
50 674.2 31/21, 34/23 v3G𝄪, vvA
51 687.6 vvG𝄪, vA
52 701.1 3/2 A
53 714.6 ^A, ^^B♭♭
54 728.1 32/21, 35/23 ^^A, ^3B♭♭
55 741.6 23/15 ^3A, v4B♭
56 755.1 17/11 ^4A, v3B♭
57 768.5 v3A♯, vvB♭
58 782 11/7 vvA♯, vB♭
59 795.5 19/12 vA♯, B♭
60 809 A♯, ^B♭
61 822.5 37/23 ^A♯, ^^B♭
62 836 34/21 ^^A♯, ^3B♭
63 849.4 31/19 ^3A♯, v4B
64 862.9 28/17 ^4A♯, v3B
65 876.4 v3A𝄪, vvB
66 889.9 vvA𝄪, vB
67 903.4 27/16, 32/19 B
68 916.9 17/10 ^B, ^^C♭
69 930.3 12/7 ^^B, ^3C♭
70 943.8 19/11, 31/18 ^3B, v4C
71 957.3 33/19, 40/23 ^4B, v3C
72 970.8 7/4 v3B♯, vvC
73 984.3 30/17 vvB♯, vC
74 997.8 16/9 C
75 1011.2 ^C, ^^D♭♭
76 1024.7 38/21 ^^C, ^3D♭♭
77 1038.2 31/17 ^3C, v4D♭
78 1051.7 11/6 ^4C, v3D♭
79 1065.2 37/20 v3C♯, vvD♭
80 1078.7 28/15, 41/22 vvC♯, vD♭
81 1092.1 vC♯, D♭
82 1105.6 36/19 C♯, ^D♭
83 1119.1 21/11 ^C♯, ^^D♭
84 1132.6 ^^C♯, ^3D♭
85 1146.1 31/16, 33/17 ^3C♯, v4D
86 1159.6 41/21 ^4C♯, v3D
87 1173 v3C𝄪, vvD
88 1186.5 vvC𝄪, vD
89 1200 2/1 D

Notation

Ups and downs notation

89edo can be notated using ups and downs notation using Helmholtz–Ellis accidentals:

Step Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sharp Symbol
Heji18.svg
Heji19.svg
Heji20.svg
Heji21.svg
HeQu1.svg
Heji22.svg
Heji23.svg
Heji24.svg
Heji25.svg
Heji26.svg
Heji27.svg
Heji28.svg
HeQu3.svg
Heji29.svg
Heji30.svg
Heji31.svg
Heji32.svg
Heji33.svg
Heji34.svg
Heji35.svg
Flat Symbol
Heji17.svg
Heji16.svg
Heji15.svg
HeQd1.svg
Heji14.svg
Heji13.svg
Heji12.svg
Heji11.svg
Heji10.svg
Heji9.svg
Heji8.svg
HeQd3.svg
Heji7.svg
Heji6.svg
Heji5.svg
Heji4.svg
Heji3.svg
Heji2.svg
Heji1.svg

Approximation to JI

Zeta peak index

Tuning Strength Closest edo Integer limit
ZPI Steps per octave Step size (cents) Height Integral Gap Edo Octave (cents) Consistent Distinct
497zpi 89.0229355804124 13.4796723133902 7.567368 1.124501 16.042570 89edo 1199.69083589172 12 12

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3 [-141 89 [89 141]] +0.262 0.262 1.95
2.3.5 32805/32768, 10077696/9765625 [89 141 207]] −0.500 1.098 8.15
2.3.5.7 126/125, 1728/1715, 32805/32768 [89 141 207 250]] −0.550 0.955 7.08
2.3.5.7.11 126/125, 176/175, 243/242, 16384/16335 [89 141 207 250 308]] −0.526 0.855 6.35

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
ratio*
Temperaments
1 13\89 175.28 72/65 Sesquiquartififths / sesquart
1 21\89 283.15 13/11 Neominor
1 23\89 310.11 6/5 Myna
1 29\89 391.01 5/4 Amigo
1 37\89 498.87 4/3 Grackle

* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if distinct

Scales

Music

Francium