There are many conceivable ways to map 89edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean. Due to the size of the edo, this mapping covers less than 2/3rds of the notes.
Diatonic
Note that since 89edo is a schismatic tuning, the best approximation to 5/4 is the diminished fourth.
2
17
9
24
39
54
69
1
16
31
46
61
76
2
17
8
23
38
53
68
83
9
24
39
54
69
0
15
30
45
60
75
1
16
31
46
61
76
2
17
7
22
37
52
67
82
8
23
38
53
68
83
9
24
39
54
69
88
14
29
44
59
74
0
15
30
45
60
75
1
16
31
46
61
76
2
17
6
21
36
51
66
81
7
22
37
52
67
82
8
23
38
53
68
83
9
24
39
54
69
87
13
28
43
58
73
88
14
29
44
59
74
0
15
30
45
60
75
1
16
31
46
61
76
2
17
20
35
50
65
80
6
21
36
51
66
81
7
22
37
52
67
82
8
23
38
53
68
83
9
24
39
54
69
57
72
87
13
28
43
58
73
88
14
29
44
59
74
0
15
30
45
60
75
1
16
31
46
61
76
20
35
50
65
80
6
21
36
51
66
81
7
22
37
52
67
82
8
23
38
53
68
83
57
72
87
13
28
43
58
73
88
14
29
44
59
74
0
15
30
45
60
75
20
35
50
65
80
6
21
36
51
66
81
7
22
37
52
67
82
57
72
87
13
28
43
58
73
88
14
29
44
59
74
20
35
50
65
80
6
21
36
51
66
81
57
72
87
13
28
43
58
73
20
35
50
65
80
57
72
Other Mappings
The smallest mapping that covers the whole gamut is the 4L 7s one. Interestingly, there are two different mappings that fit that criteria, both good.
Myna
The myna mapping is quite lopsided, but is the optimal patent val for the temperament and efficiently gives access to the full 11-limit.
58
61
75
78
81
84
87
0
3
6
9
12
15
18
21
17
20
23
26
29
32
35
38
41
44
47
31
34
37
40
43
46
49
52
55
58
61
64
67
70
48
51
54
57
60
63
66
69
72
75
78
81
84
87
1
4
7
62
65
68
71
74
77
80
83
86
0
3
6
9
12
15
18
21
24
27
30
79
82
85
88
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
73
76
79
24
27
30
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
1
4
7
10
13
16
47
50
53
56
59
62
65
68
71
74
77
80
83
86
0
3
6
9
12
15
18
21
24
27
30
33
73
76
79
82
85
88
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
56
59
62
65
68
71
74
77
80
83
86
0
3
6
82
85
88
2
5
8
11
14
17
20
23
16
19
22
25
28
31
34
37
42
45
48
51
54
65
68
Orgone
The Orgone mapping focusses on making the 2.7.11 subgroup easy to play, but is extremely efficient at covering that and only a tenth of a cent off the minimax tuning, plus it skips or repeats fewer notes at the edges.
76
83
86
4
11
18
25
0
7
14
21
28
35
42
49
10
17
24
31
38
45
52
59
66
73
80
13
20
27
34
41
48
55
62
69
76
83
1
8
15
23
30
37
44
51
58
65
72
79
86
4
11
18
25
32
39
46
26
33
40
47
54
61
68
75
82
0
7
14
21
28
35
42
49
56
63
70
36
43
50
57
64
71
78
85
3
10
17
24
31
38
45
52
59
66
73
80
87
5
12
39
46
53
60
67
74
81
88
6
13
20
27
34
41
48
55
62
69
76
83
1
8
15
22
29
36
56
63
70
77
84
2
9
16
23
30
37
44
51
58
65
72
79
86
4
11
18
25
32
39
46
53
60
67
80
87
5
12
19
26
33
40
47
54
61
68
75
82
0
7
14
21
28
35
42
49
56
63
70
77
22
29
36
43
50
57
64
71
78
85
3
10
17
24
31
38
45
52
59
66
73
80
87
46
53
60
67
74
81
88
6
13
20
27
34
41
48
55
62
69
76
83
1
77
84
2
9
16
23
30
37
44
51
58
65
72
79
86
4
11
12
19
26
33
40
47
54
61
68
75
82
0
7
14
43
50
57
64
71
78
85
3
10
17
24
67
74
81
88
6
13
20
27
9
16
23
30
37
33
40
Char-based + Sesquart rank-3 temperament
Bryan Deister has demonstrated a 10L 3s mapping for 89edo in microtonal improvisation in 89edo (2025). The rightward generator 8\89 functions as both the 16/15 (the classical diatonic semitone) and 17/16 (the large septendecimal semitone), meaning that the charisma 256/255 is tempered out, although 89edo is not listed as a tuning of any of the temperaments on the page for 256/255. Eight of these generators make a near-just Axirabian paraminor fifth ~16/11. Although being prime, 89edo technically needs no second generator, a second generator helps with reaching consonant intervals other than ~16/11; one obvious choice is the scale chroma (upwards generator) 5\89 which functions as a somewhat sharp small tridecimal third tone ~27/26; three of these make a near-just Pythagorean whole tone ~9/8; four of them make a near-just septimal minor third ~7/6. It is also possible to combine both generators to get 13\89, a slightly sharp undevicesimal supraneutral second ~21/19; four of these generator combinations make a near-just fifth ~3/2, as in Sesquiquartififths temperament and its higher-limit Sesquart extension. The range is slightly over 2⅓ octaves with no missed notes and a few repeated notes, and the octaves slope up mildly.
4
12
7
15
23
31
39
2
10
18
26
34
42
50
58
5
13
21
29
37
45
53
61
69
77
85
0
8
16
24
32
40
48
56
64
72
80
88
7
15
3
11
19
27
35
43
51
59
67
75
83
2
10
18
26
34
42
87
6
14
22
30
38
46
54
62
70
78
86
5
13
21
29
37
45
53
61
1
9
17
25
33
41
49
57
65
73
81
0
8
16
24
32
40
48
56
64
72
80
88
85
4
12
20
28
36
44
52
60
68
76
84
3
11
19
27
35
43
51
59
67
75
83
2
10
18
7
15
23
31
39
47
55
63
71
79
87
6
14
22
30
38
46
54
62
70
78
86
5
13
21
29
37
45
26
34
42
50
58
66
74
82
1
9
17
25
33
41
49
57
65
73
81
0
8
16
24
32
40
48
53
61
69
77
85
4
12
20
28
36
44
52
60
68
76
84
3
11
19
27
35
43
51
72
80
88
7
15
23
31
39
47
55
63
71
79
87
6
14
22
30
38
46
10
18
26
34
42
50
58
66
74
82
1
9
17
25
33
41
49
29
37
45
53
61
69
77
85
4
12
20
28
36
44
56
64
72
80
88
7
15
23
31
39
47
75
83
2
10
18
26
34
42
13
21
29
37
45
32
40