There are many conceivable ways to map 91edo onto the onto the Lumatone keyboard. However, the Standard Lumatone mapping for Pythagorean is unable to cover the full gamut of every octave, with the flat (patent val) and sharp (b val) versions having many skipped notes.
Diatonic
If not for the problem of failing to cover the complete gamut (such as on a hypothetical XL-size Lumatone having at least 485 keys within the span of five octaves), the flat version would be a respectable Python or Meantone (91c) mapping, while the sharp version would be a respectable mapping for Quasiultra (as 91bd).
89
13
6
21
36
51
66
90
14
29
44
59
74
89
13
7
22
37
52
67
82
6
21
36
51
66
0
15
30
45
60
75
90
14
29
44
59
74
89
13
8
23
38
53
68
83
7
22
37
52
67
82
6
21
36
51
66
1
16
31
46
61
76
0
15
30
45
60
75
90
14
29
44
59
74
89
13
9
24
39
54
69
84
8
23
38
53
68
83
7
22
37
52
67
82
6
21
36
51
66
2
17
32
47
62
77
1
16
31
46
61
76
0
15
30
45
60
75
90
14
29
44
59
74
89
13
25
40
55
70
85
9
24
39
54
69
84
8
23
38
53
68
83
7
22
37
52
67
82
6
21
36
51
66
63
78
2
17
32
47
62
77
1
16
31
46
61
76
0
15
30
45
60
75
90
14
29
44
59
74
25
40
55
70
85
9
24
39
54
69
84
8
23
38
53
68
83
7
22
37
52
67
82
63
78
2
17
32
47
62
77
1
16
31
46
61
76
0
15
30
45
60
75
25
40
55
70
85
9
24
39
54
69
84
8
23
38
53
68
83
63
78
2
17
32
47
62
77
1
16
31
46
61
76
25
40
55
70
85
9
24
39
54
69
84
63
78
2
17
32
47
62
77
25
40
55
70
85
63
78
22
39
25
42
59
76
2
11
28
45
62
79
5
22
39
14
31
48
65
82
8
25
42
59
76
2
0
17
34
51
68
85
11
28
45
62
79
5
22
39
3
20
37
54
71
88
14
31
48
65
82
8
25
42
59
76
2
80
6
23
40
57
74
0
17
34
51
68
85
11
28
45
62
79
5
22
39
83
9
26
43
60
77
3
20
37
54
71
88
14
31
48
65
82
8
25
42
59
76
2
69
86
12
29
46
63
80
6
23
40
57
74
0
17
34
51
68
85
11
28
45
62
79
5
22
39
89
15
32
49
66
83
9
26
43
60
77
3
20
37
54
71
88
14
31
48
65
82
8
25
42
59
76
2
35
52
69
86
12
29
46
63
80
6
23
40
57
74
0
17
34
51
68
85
11
28
45
62
79
5
89
15
32
49
66
83
9
26
43
60
77
3
20
37
54
71
88
14
31
48
65
82
8
35
52
69
86
12
29
46
63
80
6
23
40
57
74
0
17
34
51
68
85
89
15
32
49
66
83
9
26
43
60
77
3
20
37
54
71
88
35
52
69
86
12
29
46
63
80
6
23
40
57
74
89
15
32
49
66
83
9
26
43
60
77
35
52
69
86
12
29
46
63
89
15
32
49
66
35
52
Quartkeenlig-related rank-3 mappings
Pseudo-isomorphic
Bryan Deister has demonstrated a pseudo-isomorphic mapping for 91edo in microtonal improvisation in 91edo (2025). This layout is numbered as for 92edo, but note 91 is actually a duplicate of note 0. The range is just one note short of 3 full octaves, with octaves sloping down gently, unlike the fully isomorphic version below, which avoids the interruption from the duplicated note 0 and has slightly greater range, but at the cost of greater (and opposite) octave slope and a vertical wraparound of note 0 with ascending octaves (as well as producing a discontinuity in scales). This mapping has the same generators as the fully isomorphic version, as described below.
0
9
5
14
23
32
41
1
10
19
28
37
46
55
64
6
15
24
33
42
51
60
69
78
87
4
2
11
20
29
38
47
56
65
74
83
0
9
18
27
7
16
25
34
43
52
61
70
79
88
5
14
23
32
41
50
59
3
12
21
30
39
48
57
66
75
84
1
10
19
28
37
46
55
64
73
82
8
17
26
35
44
53
62
71
80
89
6
15
24
33
42
51
60
69
78
87
4
13
22
4
13
22
31
40
49
58
67
76
85
2
11
20
29
38
47
56
65
74
83
0
9
18
27
36
45
18
27
36
45
54
63
72
81
90
7
16
25
34
43
52
61
70
79
88
5
14
23
32
41
50
59
68
77
41
50
59
68
77
86
3
12
21
30
39
48
57
66
75
84
1
10
19
28
37
46
55
64
73
82
73
82
91
8
17
26
35
44
53
62
71
80
89
6
15
24
33
42
51
60
69
78
87
4
13
22
31
40
49
58
67
76
85
2
11
20
29
38
47
56
65
74
83
36
45
54
63
72
81
90
7
16
25
34
43
52
61
70
79
88
59
68
77
86
3
12
21
30
39
48
57
66
75
84
91
8
17
26
35
44
53
62
71
80
89
22
31
40
49
58
67
76
85
54
63
72
81
90
77
86
Isomorphic
Bryan Deister has demonstrated an isomorphic 9L 2s mapping for 91edo in improv 91edo (2025). The range is just one note beyond 3 full octaves, with octaves sloping up mildly (which results in a wraparound of note 0). The rightward generator 9\91 is the septimal diatonic semitone ~15\14. The upward generator 4\91 is a quartertone that functions as ~32/31, ~33/32, ~34/33, and ~36/35; two of them make the minor diatonic semitone ~17/16; six of them make a near-just minor third ~6/5. The use of this generator makes this a mapping for Quartkeenlig; however, since stacking the upward generator quickly leads to wraparounds, and attempting to get the perfect fifth in 91edo with this generator yields 52\91, which is the 7edo (91bb) fifth. Therefore, this mapping really needs to be treated as a rank-3 temperament mapping; for instance, to get the patent fifth 53\92 (a mildly flat ~3/2, almost exactly 1/7-comma meantone), it is easiest to stack five rightward generators and two upward generators.
0
9
5
14
23
32
41
1
10
19
28
37
46
55
64
6
15
24
33
42
51
60
69
78
87
5
2
11
20
29
38
47
56
65
74
83
1
10
19
28
7
16
25
34
43
52
61
70
79
88
6
15
24
33
42
51
60
3
12
21
30
39
48
57
66
75
84
2
11
20
29
38
47
56
65
74
83
8
17
26
35
44
53
62
71
80
89
7
16
25
34
43
52
61
70
79
88
6
15
24
4
13
22
31
40
49
58
67
76
85
3
12
21
30
39
48
57
66
75
84
2
11
20
29
38
47
18
27
36
45
54
63
72
81
90
8
17
26
35
44
53
62
71
80
89
7
16
25
34
43
52
61
70
79
41
50
59
68
77
86
4
13
22
31
40
49
58
67
76
85
3
12
21
30
39
48
57
66
75
84
73
82
0
9
18
27
36
45
54
63
72
81
90
8
17
26
35
44
53
62
71
80
89
5
14
23
32
41
50
59
68
77
86
4
13
22
31
40
49
58
67
76
85
37
46
55
64
73
82
0
9
18
27
36
45
54
63
72
81
90
60
69
78
87
5
14
23
32
41
50
59
68
77
86
1
10
19
28
37
46
55
64
73
82
0
24
33
42
51
60
69
78
87
56
65
74
83
1
79
88