92edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 91edo92edo93edo →
Prime factorization 22 × 23
Step size 13.0435¢ 
Fifth 54\92 (704.348¢) (→27\46)
Semitones (A1:m2) 10:6 (130.4¢ : 78.26¢)
Consistency limit 5
Distinct consistency limit 5

92 equal divisions of the octave (abbreviated 92edo or 92ed2), also called 92-tone equal temperament (92tet) or 92 equal temperament (92et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 92 equal parts of about 13 ¢ each. Each step represents a frequency ratio of 21/92, or the 92nd root of 2.

Theory

The equal temperament is contorted through the 17-limit, with the same tuning and commas as 46edo, and hence attracts little interest. That said, the approximation to the 19th harmonic is much improved. Like 46, the patent fifth (54\92) is about 2.4 cents sharp. The alternate fifth 53\92 is a very flat fifth, flatter even than 26edo, and the 92bcccd val supports flattone. 92edo is the highest in a series of four consecutive edos to temper out the quartisma (117440512/117406179).

Odd harmonics

Approximation of odd harmonics in 92edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) +2.39 +4.99 -3.61 +4.79 -3.49 -5.75 -5.66 -0.61 +2.49 -1.22 -2.19
Relative (%) +18.3 +38.3 -27.7 +36.7 -26.8 -44.0 -43.4 -4.7 +19.1 -9.3 -16.8
Steps
(reduced)
146
(54)
214
(30)
258
(74)
292
(16)
318
(42)
340
(64)
359
(83)
376
(8)
391
(23)
404
(36)
416
(48)

Subsets and supersets

Since 92 factors into 22 × 23, 92edo has subset edos 2, 4, 23, and 46.

Intervals

Steps Cents Approximate Ratios Ups and Downs Notation
0 0 1/1 D
1 13.043 ^D, v5E♭
2 26.087 ^^D, v4E♭
3 39.13 42/41, 43/42 ^3D, v3E♭
4 52.174 33/32, 34/33, 35/34 ^4D, vvE♭
5 65.217 ^5D, vE♭
6 78.261 22/21, 23/22 ^6D, E♭
7 91.304 19/18, 20/19, 39/37 ^7D, v9E
8 104.348 17/16, 35/33 ^8D, v8E
9 117.391 31/29 ^9D, v7E
10 130.435 14/13, 41/38 D♯, v6E
11 143.478 38/35 ^D♯, v5E
12 156.522 23/21, 35/32 ^^D♯, v4E
13 169.565 32/29, 43/39 ^3D♯, v3E
14 182.609 10/9 ^4D♯, vvE
15 195.652 37/33 ^5D♯, vE
16 208.696 35/31 E
17 221.739 33/29, 42/37 ^E, v5F
18 234.783 ^^E, v4F
19 247.826 ^3E, v3F
20 260.87 36/31, 43/37 ^4E, vvF
21 273.913 34/29, 41/35 ^5E, vF
22 286.957 13/11, 33/28 F
23 300 19/16 ^F, v5G♭
24 313.043 6/5 ^^F, v4G♭
25 326.087 29/24, 35/29, 41/34 ^3F, v3G♭
26 339.13 28/23 ^4F, vvG♭
27 352.174 38/31 ^5F, vG♭
28 365.217 21/17 ^6F, G♭
29 378.261 41/33 ^7F, v9G
30 391.304 ^8F, v8G
31 404.348 24/19, 43/34 ^9F, v7G
32 417.391 14/11 F♯, v6G
33 430.435 41/32 ^F♯, v5G
34 443.478 31/24, 40/31 ^^F♯, v4G
35 456.522 43/33 ^3F♯, v3G
36 469.565 21/16, 38/29 ^4F♯, vvG
37 482.609 37/28, 41/31 ^5F♯, vG
38 495.652 4/3 G
39 508.696 ^G, v5A♭
40 521.739 23/17, 27/20 ^^G, v4A♭
41 534.783 ^3G, v3A♭
42 547.826 ^4G, vvA♭
43 560.87 29/21 ^5G, vA♭
44 573.913 32/23, 39/28 ^6G, A♭
45 586.957 ^7G, v9A
46 600 41/29 ^8G, v8A
47 613.043 37/26 ^9G, v7A
48 626.087 23/16, 33/23 G♯, v6A
49 639.13 42/29 ^G♯, v5A
50 652.174 35/24 ^^G♯, v4A
51 665.217 ^3G♯, v3A
52 678.261 34/23, 40/27 ^4G♯, vvA
53 691.304 ^5G♯, vA
54 704.348 3/2 A
55 717.391 ^A, v5B♭
56 730.435 29/19, 32/21 ^^A, v4B♭
57 743.478 43/28 ^3A, v3B♭
58 756.522 31/20 ^4A, vvB♭
59 769.565 ^5A, vB♭
60 782.609 11/7 ^6A, B♭
61 795.652 19/12 ^7A, v9B
62 808.696 ^8A, v8B
63 821.739 37/23 ^9A, v7B
64 834.783 34/21 A♯, v6B
65 847.826 31/19 ^A♯, v5B
66 860.87 23/14 ^^A♯, v4B
67 873.913 ^3A♯, v3B
68 886.957 5/3 ^4A♯, vvB
69 900 32/19, 37/22 ^5A♯, vB
70 913.043 22/13, 39/23 B
71 926.087 29/17, 41/24 ^B, v5C
72 939.13 31/18 ^^B, v4C
73 952.174 ^3B, v3C
74 965.217 ^4B, vvC
75 978.261 37/21 ^5B, vC
76 991.304 39/22 C
77 1004.348 ^C, v5D♭
78 1017.391 9/5 ^^C, v4D♭
79 1030.435 29/16 ^3C, v3D♭
80 1043.478 42/23 ^4C, vvD♭
81 1056.522 35/19 ^5C, vD♭
82 1069.565 13/7 ^6C, D♭
83 1082.609 43/23 ^7C, v9D
84 1095.652 32/17 ^8C, v8D
85 1108.696 19/10, 36/19 ^9C, v7D
86 1121.739 21/11 C♯, v6D
87 1134.783 ^C♯, v5D
88 1147.826 33/17 ^^C♯, v4D
89 1160.87 41/21, 43/22 ^3C♯, v3D
90 1173.913 ^4C♯, vvD
91 1186.957 ^5C♯, vD
92 1200 2/1 D