There are many conceivable ways to map 94edo onto the onto the Lumatone keyboard. Only one, however, agrees with the Standard Lumatone mapping for Pythagorean.
Diatonic
Note that due to the size of the edo, this only covers slightly over half of its notes.
4
20
11
27
43
59
75
2
18
34
50
66
82
4
20
9
25
41
57
73
89
11
27
43
59
75
0
16
32
48
64
80
2
18
34
50
66
82
4
20
7
23
39
55
71
87
9
25
41
57
73
89
11
27
43
59
75
92
14
30
46
62
78
0
16
32
48
64
80
2
18
34
50
66
82
4
20
5
21
37
53
69
85
7
23
39
55
71
87
9
25
41
57
73
89
11
27
43
59
75
90
12
28
44
60
76
92
14
30
46
62
78
0
16
32
48
64
80
2
18
34
50
66
82
4
20
19
35
51
67
83
5
21
37
53
69
85
7
23
39
55
71
87
9
25
41
57
73
89
11
27
43
59
75
58
74
90
12
28
44
60
76
92
14
30
46
62
78
0
16
32
48
64
80
2
18
34
50
66
82
19
35
51
67
83
5
21
37
53
69
85
7
23
39
55
71
87
9
25
41
57
73
89
58
74
90
12
28
44
60
76
92
14
30
46
62
78
0
16
32
48
64
80
19
35
51
67
83
5
21
37
53
69
85
7
23
39
55
71
87
58
74
90
12
28
44
60
76
92
14
30
46
62
78
19
35
51
67
83
5
21
37
53
69
85
58
74
90
12
28
44
60
76
19
35
51
67
83
58
74
Since 94edo is a schismatic tuning, the best approximation to 5/4 is the diminished fourth. There is an alternate diatonic scale based on Carlos Beta that makes 5-limit chords easy to play, but it has a slight octave stretch and misses out even more notes.
84
5
0
15
30
45
60
89
10
25
40
55
70
85
6
5
20
35
50
65
80
1
16
31
46
61
0
15
30
45
60
75
90
11
26
41
56
71
86
7
10
25
40
55
70
85
6
21
36
51
66
81
2
17
32
47
62
5
20
35
50
65
80
1
16
31
46
61
76
91
12
27
42
57
72
87
8
15
30
45
60
75
90
11
26
41
56
71
86
7
22
37
52
67
82
3
18
33
48
63
10
25
40
55
70
85
6
21
36
51
66
81
2
17
32
47
62
77
92
13
28
43
58
73
88
9
35
50
65
80
1
16
31
46
61
76
91
12
27
42
57
72
87
8
23
38
53
68
83
4
19
34
49
64
75
90
11
26
41
56
71
86
7
22
37
52
67
82
3
18
33
48
63
78
93
14
29
44
59
74
36
51
66
81
2
17
32
47
62
77
92
13
28
43
58
73
88
9
24
39
54
69
84
76
91
12
27
42
57
72
87
8
23
38
53
68
83
4
19
34
49
64
79
37
52
67
82
3
18
33
48
63
78
93
14
29
44
59
74
89
77
92
13
28
43
58
73
88
9
24
39
54
69
84
38
53
68
83
4
19
34
49
64
79
0
78
93
14
29
44
59
74
89
39
54
69
84
5
79
0
Bischismic
If you want to be able to access the full gamut, the 10L 2s bischismic mapping is the most efficient layout, although it only covers a little under three octaves and the best ratios are not as easy to play together as in a true diaschismic system.
76
84
83
91
5
13
21
82
90
4
12
20
28
36
44
89
3
11
19
27
35
43
51
59
67
75
88
2
10
18
26
34
42
50
58
66
74
82
90
4
1
9
17
25
33
41
49
57
65
73
81
89
3
11
19
27
35
0
8
16
24
32
40
48
56
64
72
80
88
2
10
18
26
34
42
50
58
7
15
23
31
39
47
55
63
71
79
87
1
9
17
25
33
41
49
57
65
73
81
89
6
14
22
30
38
46
54
62
70
78
86
0
8
16
24
32
40
48
56
64
72
80
88
2
10
18
21
29
37
45
53
61
69
77
85
93
7
15
23
31
39
47
55
63
71
79
87
1
9
17
25
33
41
49
44
52
60
68
76
84
92
6
14
22
30
38
46
54
62
70
78
86
0
8
16
24
32
40
48
56
75
83
91
5
13
21
29
37
45
53
61
69
77
85
93
7
15
23
31
39
47
55
63
4
12
20
28
36
44
52
60
68
76
84
92
6
14
22
30
38
46
54
62
35
43
51
59
67
75
83
91
5
13
21
29
37
45
53
61
69
58
66
74
82
90
4
12
20
28
36
44
52
60
68
89
3
11
19
27
35
43
51
59
67
75
18
26
34
42
50
58
66
74
49
57
65
73
81
72
80
Diatonicized Chromaticism + Kleischismic + Cassandra (Garibaldi)
Bryan Deister has demonstrated the 11L 2s mapping of 94edo in microtonal improvisation in 94edo (2025). In the application of this temperament to this mapping, the rightward step corresponds to a stack of two quite accurate ~16/11 generators (51\94, and the octave complement is ~11/8, at 43\94) after octave-reduction, making this a mapping closely related to the Diatonicized Chromaticism used extensively by Ivan Wyschnegradsky in his 24edo compositions. The rightward step can also be made by going down by the octave-complemented generator (39\94, ~11/8) and semioctave-reducing. This makes it a mapping for 11-limit (or higher) Kleischismic (substituting the normal generator ~35/24 with the simpler ~11/8, which 94edo represents more accurately), although this yields an extremely soft 10L 2s scale (step ratio 8:7, currently off the right edge of the scale tree) instead of 11L 2s. Similarly, if one uses the highly accurate ~4/3 (39\94, octave complement ~3/2 as 55\94) and stacks two of these, the result is a rightward double step, making this mapping also work for Garibaldi and its 11-limit (or higher) extension Cassandra (although with some vertical wraparound challenges as noted following). A diatonic scale, or better yet a Ptolemy's intense diatonic (Zarlino) scale appears possible to do using both hands, although the octave slope causes the wraparound point to change with octave. The range is a bit under three octaves, and the octaves slope up, which puts the third note 0 at the far edge (although it does repeat at the near edge). A possibility for addressing this (not shown here) is to set note 0 is set to a point on the left edge half way between its current location and the lower left corner (to get note 0 two octaves higher to be 3/4 of the way up); this results in a skipped note 1 in the lowest note 0 to note 0 octave, but if one is willing to assign one key to a non-isomorphic position, the note 92 in the lower left corner (from the octave below the lowest note 0) could be reassigned to the missing note 1.
4
12
7
15
23
31
39
2
10
18
26
34
42
50
58
5
13
21
29
37
45
53
61
69
77
85
0
8
16
24
32
40
48
56
64
72
80
88
2
10
3
11
19
27
35
43
51
59
67
75
83
91
5
13
21
29
37
92
6
14
22
30
38
46
54
62
70
78
86
0
8
16
24
32
40
48
56
1
9
17
25
33
41
49
57
65
73
81
89
3
11
19
27
35
43
51
59
67
75
83
90
4
12
20
28
36
44
52
60
68
76
84
92
6
14
22
30
38
46
54
62
70
78
86
0
8
7
15
23
31
39
47
55
63
71
79
87
1
9
17
25
33
41
49
57
65
73
81
89
3
11
19
27
35
26
34
42
50
58
66
74
82
90
4
12
20
28
36
44
52
60
68
76
84
92
6
14
22
30
38
53
61
69
77
85
93
7
15
23
31
39
47
55
63
71
79
87
1
9
17
25
33
41
72
80
88
2
10
18
26
34
42
50
58
66
74
82
90
4
12
20
28
36
5
13
21
29
37
45
53
61
69
77
85
93
7
15
23
31
39
24
32
40
48
56
64
72
80
88
2
10
18
26
34
51
59
67
75
83
91
5
13
21
29
37
70
78
86
0
8
16
24
32
3
11
19
27
35
22
30