There are many conceivable ways to map 96edo onto the onto the Lumatone keyboard. However, it has 8 mutually-exclusive rings of fifths, so the Standard Lumatone mapping for Pythagorean is not one of them. Due to its size, it would not cover the whole gamut even if it was.
Diatonic
The second best fifth is shared with 32edo, so that doesn't work either, making the 55/96 flat fifth the first one that produces a regular, albeit near equalised diatonic scale.
72
86
85
3
17
31
45
84
2
16
30
44
58
72
86
1
15
29
43
57
71
85
3
17
31
45
0
14
28
42
56
70
84
2
16
30
44
58
72
86
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
72
86
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
72
86
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
92
10
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
92
10
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
92
10
24
38
52
66
80
94
12
26
40
54
68
82
51
65
79
93
11
25
39
53
67
81
95
92
10
24
38
52
66
80
94
51
65
79
93
11
92
10
Würschmidt
Instead, the most efficient layout that allows access to all notes is the 3L 10s Würschmidt mapping, although this does reduce the range to a little under three octaves and many notes are inaccessible at the edges due to the diesis being on the up-right axis.
14
17
36
39
42
45
48
55
58
61
64
67
70
73
76
77
80
83
86
89
92
95
2
5
8
11
0
3
6
9
12
15
18
21
24
27
30
33
36
39
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
2
63
66
69
72
75
78
81
84
87
90
93
0
3
6
9
12
15
18
21
24
27
30
33
82
85
88
91
94
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
0
3
6
9
12
15
18
70
73
76
79
82
85
88
91
94
1
4
7
10
13
16
19
22
25
28
31
34
37
40
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
61
64
67
70
73
76
79
82
85
88
91
94
1
4
92
95
2
5
8
11
14
17
20
23
26
24
27
30
33
36
39
42
45
55
58
61
64
67
83
86
Interpental
The Interpental mapping is not quite as efficient at accessing the 5-limit, but is easier to navigate overall.
10
19
12
21
30
39
48
5
14
23
32
41
50
59
68
7
16
25
34
43
52
61
70
79
88
1
0
9
18
27
36
45
54
63
72
81
90
3
12
21
2
11
20
29
38
47
56
65
74
83
92
5
14
23
32
41
50
91
4
13
22
31
40
49
58
67
76
85
94
7
16
25
34
43
52
61
70
93
6
15
24
33
42
51
60
69
78
87
0
9
18
27
36
45
54
63
72
81
90
3
86
95
8
17
26
35
44
53
62
71
80
89
2
11
20
29
38
47
56
65
74
83
92
5
14
23
1
10
19
28
37
46
55
64
73
82
91
4
13
22
31
40
49
58
67
76
85
94
7
16
25
34
43
52
21
30
39
48
57
66
75
84
93
6
15
24
33
42
51
60
69
78
87
0
9
18
27
36
45
54
50
59
68
77
86
95
8
17
26
35
44
53
62
71
80
89
2
11
20
29
38
47
56
70
79
88
1
10
19
28
37
46
55
64
73
82
91
4
13
22
31
40
49
3
12
21
30
39
48
57
66
75
84
93
6
15
24
33
42
51
23
32
41
50
59
68
77
86
95
8
17
26
35
44
52
61
70
79
88
1
10
19
28
37
46
72
81
90
3
12
21
30
39
5
14
23
32
41
25
34
Compton-related rank 3 temperament
Bryan Deister has demonstrated a mapping for 96edo in which the rightward generator is 8\96 (~18/17) as in 12edo, while the upward generator is 7\96 (~20/19), in microtonal improvisation in 96edo (2025). The range is just over two octaves, with octaves sloping away and then wrapping around; on the other hand, it is easy to play eight 12edo subsets of 96edo that are displaced slightly from each other, as if one had eight pianos (even if of rather short compass) somehow all in reach at once. (Here, note 0 is in the middle of the left edge instead of Bryan Deister's usual lower left corner, to avoid skipping some of the bottom notes in the lowest note 0 to note 0 octave.) Although not shown in the video, this mapping also enables easy glissandos diagonally up-left or down-right.
12
20
13
21
29
37
45
6
14
22
30
38
46
54
62
7
15
23
31
39
47
55
63
71
79
87
0
8
16
24
32
40
48
56
64
72
80
88
0
8
1
9
17
25
33
41
49
57
65
73
81
89
1
9
17
25
33
90
2
10
18
26
34
42
50
58
66
74
82
90
2
10
18
26
34
42
50
91
3
11
19
27
35
43
51
59
67
75
83
91
3
11
19
27
35
43
51
59
67
75
84
92
4
12
20
28
36
44
52
60
68
76
84
92
4
12
20
28
36
44
52
60
68
76
84
92
93
5
13
21
29
37
45
53
61
69
77
85
93
5
13
21
29
37
45
53
61
69
77
85
93
5
13
21
14
22
30
38
46
54
62
70
78
86
94
6
14
22
30
38
46
54
62
70
78
86
94
6
14
22
39
47
55
63
71
79
87
95
7
15
23
31
39
47
55
63
71
79
87
95
7
15
23
56
64
72
80
88
0
8
16
24
32
40
48
56
64
72
80
88
0
8
16
81
89
1
9
17
25
33
41
49
57
65
73
81
89
1
9
17
2
10
18
26
34
42
50
58
66
74
82
90
2
10
27
35
43
51
59
67
75
83
91
3
11
44
52
60
68
76
84
92
4
69
77
85
93
5
86
94