Lumatone mapping for 96edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 96edo onto the Lumatone keyboard. Unfortunately, as it has multiple rings of 12edo 5ths, the Standard Lumatone mapping for Pythagorean is not one of them, and due to the edos size, would not cover the whole gamut even if it was. The second best 5th is shared with 32edo, so that doesn't work either, making the 55/96 flat 5th the first one that produces a regular, albeit near equalised diatonic scale.

Lumatone.svg
72
86
85
3
17
31
45
84
2
16
30
44
58
72
86
1
15
29
43
57
71
85
3
17
31
45
0
14
28
42
56
70
84
2
16
30
44
58
72
86
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
72
86
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
72
86
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
85
3
17
31
45
92
10
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
84
2
16
30
44
58
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
1
15
29
43
57
71
92
10
24
38
52
66
80
94
12
26
40
54
68
82
0
14
28
42
56
70
51
65
79
93
11
25
39
53
67
81
95
13
27
41
55
69
83
92
10
24
38
52
66
80
94
12
26
40
54
68
82
51
65
79
93
11
25
39
53
67
81
95
92
10
24
38
52
66
80
94
51
65
79
93
11
92
10


Instead, the most efficient layout that allows access to all notes is the 3L 10s Würschmidt mapping, although this does reduce the range to a little under three octaves and many notes are inaccessible at the edges due to the diesis being on the up-right axis.

Lumatone.svg
14
17
36
39
42
45
48
55
58
61
64
67
70
73
76
77
80
83
86
89
92
95
2
5
8
11
0
3
6
9
12
15
18
21
24
27
30
33
36
39
22
25
28
31
34
37
40
43
46
49
52
55
58
61
64
67
70
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
95
2
63
66
69
72
75
78
81
84
87
90
93
0
3
6
9
12
15
18
21
24
27
30
33
82
85
88
91
94
1
4
7
10
13
16
19
22
25
28
31
34
37
40
43
46
49
52
55
58
61
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59
62
65
68
71
74
77
80
83
86
89
92
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
84
87
90
93
0
3
6
9
12
15
18
70
73
76
79
82
85
88
91
94
1
4
7
10
13
16
19
22
25
28
31
34
37
40
2
5
8
11
14
17
20
23
26
29
32
35
38
41
44
47
50
53
56
59
33
36
39
42
45
48
51
54
57
60
63
66
69
72
75
78
81
61
64
67
70
73
76
79
82
85
88
91
94
1
4
92
95
2
5
8
11
14
17
20
23
26
24
27
30
33
36
39
42
45
55
58
61
64
67
83
86


The Interpental mapping is not quite as efficient at accessing the 5-limit, but is easier to navigate overall.

Lumatone.svg
10
19
12
21
30
39
48
5
14
23
32
41
50
59
68
7
16
25
34
43
52
61
70
79
88
1
0
9
18
27
36
45
54
63
72
81
90
3
12
21
2
11
20
29
38
47
56
65
74
83
92
5
14
23
32
41
50
91
4
13
22
31
40
49
58
67
76
85
94
7
16
25
34
43
52
61
70
93
6
15
24
33
42
51
60
69
78
87
0
9
18
27
36
45
54
63
72
81
90
3
86
95
8
17
26
35
44
53
62
71
80
89
2
11
20
29
38
47
56
65
74
83
92
5
14
23
1
10
19
28
37
46
55
64
73
82
91
4
13
22
31
40
49
58
67
76
85
94
7
16
25
34
43
52
21
30
39
48
57
66
75
84
93
6
15
24
33
42
51
60
69
78
87
0
9
18
27
36
45
54
50
59
68
77
86
95
8
17
26
35
44
53
62
71
80
89
2
11
20
29
38
47
56
70
79
88
1
10
19
28
37
46
55
64
73
82
91
4
13
22
31
40
49
3
12
21
30
39
48
57
66
75
84
93
6
15
24
33
42
51
23
32
41
50
59
68
77
86
95
8
17
26
35
44
52
61
70
79
88
1
10
19
28
37
46
72
81
90
3
12
21
30
39
5
14
23
32
41
25
34


VTELumatone mappings 
93edo94edo95edoLumatone mapping for 96edo97edo98edo99edo