97edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 96edo97edo98edo →
Prime factorization 97 (prime)
Step size 12.3711¢
Fifth 57\97 (705.155¢)
Semitones (A1:m2) 11:6 (136.1¢ : 74.23¢)
Consistency limit 5
Distinct consistency limit 5

97 equal divisions of the octave (abbreviated 97edo or 97ed2), also called 97-tone equal temperament (97tet) or 97 equal temperament (97et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 97 equal parts of about 12.4 ¢ each. Each step represents a frequency ratio of 21/97, or the 97th root of 2.

Theory

In the patent val, 97edo tempers out 875/864, 4000/3969 and 1029/1024 in the 7-limit, 245/242, 100/99, 385/384 and 441/440 in the 11-limit, and 196/195, 352/351 and 676/675 in the 13-limit. It provides the optimal patent val for the 13-limit 41&97 temperament tempering out 100/99, 196/195, 245/242 and 385/384.

Odd harmonics

Approximation of odd harmonics in 97edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +3.20 -2.81 -3.88 -5.97 +5.38 +0.71 +0.39 -5.99 -0.61 -0.68 +2.65
relative (%) +26 -23 -31 -48 +44 +6 +3 -48 -5 -5 +21
Steps
(reduced)
154
(57)
225
(31)
272
(78)
307
(16)
336
(45)
359
(68)
379
(88)
396
(8)
412
(24)
426
(38)
439
(51)

Subsets and supersets

97edo is the 25th prime edo.

388edo and 2619edo, which contain 97edo as a subset, have very high consistency limits - 37 and 33 respectively. 3395edo, which divides the edostep in 35, is a zeta edo. The berkelium temperament realizes some relationships between them through a regular temperament perspective.

JI approximation

97edo has very poor direct approximation for superparticular intervals among edos up to 200, and the worst for intervals up to 9/8 among edos up to 100. It has errors of well above one standard deviation (about 15.87%) in superparticular intervals with denominators up to 14. The first good approximation is the 16/15 semitone using the 9th note, with an error of 3%, meaning 97edo can be used as a rough version of 16/15 equal-step tuning.

Since 97edo is a prime edo, it lacks specific modulation circles, symmetrical chords or sub-edos that are present in composite edos. When notable equal divisions like 19, 31, 41, or 53 have strong JI-based harmony, 97edo does not have easily representable modulation because of its inability to represent superparticulars. However, this might result in interest in this tuning through JI-agnostic approaches.

Superparticular intervals up to 17/16
by direct approximation (even if inconsistent)
Interval Error (Relative, )
3/2 25.9
4/3 25.8
5/4 22.7
6/5 48.6
7/6 42.8
8/7 31.4
9/8 48.2
10/9 25.6
11/10 33.7
12/11 17.6
13/12 20.1
14/13 37.0
15/14 34.6
16/15 3.1
17/16 48.3

Intervals

Steps Cents Ups and downs notation Approximate ratios
0 0 D 1/1
1 12.3711 ↑D, ↓5E♭
2 24.7423 ↑↑D, ↓4E♭ 64/63, 65/64, 78/77
3 37.1134 3D, ↓3E♭ 45/44, 50/49
4 49.4845 4D, ↓↓E♭ 65/63, 77/75
5 61.8557 5D, ↓E♭ 80/77
6 74.2268 6D, E♭
7 86.5979 7D, ↓10E 21/20
8 98.9691 8D, ↓9E 55/52
9 111.34 9D, ↓8E 16/15, 77/72
10 123.711 10D, ↓7E 14/13, 15/14
11 136.082 D♯, ↓6E 13/12
12 148.454 ↑D♯, ↓5E 12/11
13 160.825 ↑↑D♯, ↓4E
14 173.196 3D♯, ↓3E
15 185.567 4D♯, ↓↓E
16 197.938 5D♯, ↓E 28/25
17 210.309 E 44/39
18 222.68 ↑E, ↓5F
19 235.052 ↑↑E, ↓4F 8/7, 55/48, 63/55
20 247.423 3E, ↓3F 15/13, 52/45
21 259.794 4E, ↓↓F 64/55, 65/56
22 272.165 5E, ↓F 75/64
23 284.536 F 13/11
24 296.907 ↑F, ↓5G♭ 25/21, 77/65
25 309.278 ↑↑F, ↓4G♭
26 321.649 3F, ↓3G♭ 77/64
27 334.021 4F, ↓↓G♭ 63/52
28 346.392 5F, ↓G♭ 11/9, 39/32, 49/40
29 358.763 6F, G♭ 16/13, 27/22
30 371.134 7F, ↓10G 26/21
31 383.505 8F, ↓9G 5/4
32 395.876 9F, ↓8G
33 408.247 10F, ↓7G
34 420.619 F♯, ↓6G
35 432.99 ↑F♯, ↓5G 77/60
36 445.361 ↑↑F♯, ↓4G
37 457.732 3F♯, ↓3G 13/10
38 470.103 4F♯, ↓↓G 21/16, 55/42, 72/55
39 482.474 5F♯, ↓G
40 494.845 G 4/3
41 507.216 ↑G, ↓5A♭ 75/56
42 519.588 ↑↑G, ↓4A♭
43 531.959 3G, ↓3A♭
44 544.33 4G, ↓↓A♭
45 556.701 5G, ↓A♭
46 569.072 6G, A♭
47 581.443 7G, ↓10A 7/5
48 593.814 8G, ↓9A 45/32, 55/39
49 606.186 9G, ↓8A 64/45, 78/55
50 618.557 10G, ↓7A 10/7, 63/44
51 630.928 G♯, ↓6A 75/52
52 643.299 ↑G♯, ↓5A
53 655.67 ↑↑G♯, ↓4A
54 668.041 3G♯, ↓3A
55 680.412 4G♯, ↓↓A 77/52
56 692.784 5G♯, ↓A
57 705.155 A 3/2
58 717.526 ↑A, ↓5B♭
59 729.897 ↑↑A, ↓4B♭ 32/21, 55/36
60 742.268 3A, ↓3B♭ 20/13
61 754.639 4A, ↓↓B♭ 65/42
62 767.01 5A, ↓B♭
63 779.381 6A, B♭
64 791.753 7A, ↓10B
65 804.124 8A, ↓9B
66 816.495 9A, ↓8B 8/5, 77/48
67 828.866 10A, ↓7B 21/13
68 841.237 A♯, ↓6B 13/8, 44/27
69 853.608 ↑A♯, ↓5B 18/11, 64/39, 80/49
70 865.979 ↑↑A♯, ↓4B
71 878.351 3A♯, ↓3B
72 890.722 4A♯, ↓↓B
73 903.093 5A♯, ↓B 42/25
74 915.464 B 22/13
75 927.835 ↑B, ↓5C 77/45
76 940.206 ↑↑B, ↓4C 55/32
77 952.577 3B, ↓3C 26/15, 45/26
78 964.948 4B, ↓↓C 7/4
79 977.32 5B, ↓C
80 989.691 C 39/22
81 1002.06 ↑C, ↓5D♭ 25/14
82 1014.43 ↑↑C, ↓4D♭
83 1026.8 3C, ↓3D♭
84 1039.18 4C, ↓↓D♭
85 1051.55 5C, ↓D♭ 11/6
86 1063.92 6C, D♭ 24/13
87 1076.29 7C, ↓10D 13/7, 28/15
88 1088.66 8C, ↓9D 15/8
89 1101.03 9C, ↓8D
90 1113.4 10C, ↓7D 40/21
91 1125.77 C♯, ↓6D
92 1138.14 ↑C♯, ↓5D 77/40
93 1150.52 ↑↑C♯, ↓4D
94 1162.89 3C♯, ↓3D 49/25
95 1175.26 4C♯, ↓↓D 63/32, 77/39
96 1187.63 5C♯, ↓D
97 1200 D 2/1

Music

Francium
Mercury Amalgam