2619edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 2618edo2619edo2620edo →
Prime factorization 33 × 97
Step size 0.45819¢
Fifth 1532\2619 (701.947¢)
Semitones (A1:m2) 248:197 (113.6¢ : 90.26¢)
Consistency limit 33
Distinct consistency limit 33

2619 equal divisions of the octave (abbreviated 2619edo), or 2619-tone equal temperament (2619tet), 2619 equal temperament (2619et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 2619 equal parts of about 0.458 ¢ each. Each step of 2619edo represents a frequency ratio of 21/2619, or the 2619th root of 2.

2619edo is consistent in the 33-odd-limit and it is an excellent 2.3.17.29.31 subgroup tuning.

Prime harmonics

Approximation of prime harmonics in 2619edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.000 -0.008 -0.059 -0.212 -0.115 -0.207 -0.030 -0.148 -0.096 -0.024 -0.018
relative (%) +0 -2 -13 -46 -25 -45 -7 -32 -21 -5 -4
Steps
(reduced)
2619
(0)
4151
(1532)
6081
(843)
7352
(2114)
9060
(1203)
9691
(1834)
10705
(229)
11125
(649)
11847
(1371)
12723
(2247)
12975
(2499)


This page is a stub. You can help the Xenharmonic Wiki by expanding it.