2619edo
Jump to navigation
Jump to search
Prime factorization
33 × 97
Step size
0.45819¢
Fifth
1532\2619 (701.947¢)
Semitones (A1:m2)
248:197 (113.6¢ : 90.26¢)
Consistency limit
33
Distinct consistency limit
33
← 2618edo | 2619edo | 2620edo → |
2619 equal divisions of the octave (2619edo), or 2619-tone equal temperament (2619tet), 2619 equal temperament (2619et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 2619 equal parts of about 0.458 ¢ each.
Theory
2619edo is consistent in the 33-odd-limit and it is an excellent 2.3.17.29.31 subgroup tuning.
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | absolute (¢) | +0.000 | -0.008 | -0.059 | -0.212 | -0.115 | -0.207 | -0.030 | -0.148 | -0.096 | -0.024 | -0.018 |
relative (%) | +0 | -2 | -13 | -46 | -25 | -45 | -7 | -32 | -21 | -5 | -4 | |
Steps (reduced) |
2619 (0) |
4151 (1532) |
6081 (843) |
7352 (2114) |
9060 (1203) |
9691 (1834) |
10705 (229) |
11125 (649) |
11847 (1371) |
12723 (2247) |
12975 (2499) |