98edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 97edo 98edo 99edo →
Prime factorization 2 × 72
Step size 12.2449¢ 
Fifth 57\98 (697.959¢)
Semitones (A1:m2) 7:9 (85.71¢ : 110.2¢)
Consistency limit 3
Distinct consistency limit 3

98 equal divisions of the octave (abbreviated 98edo or 98ed2), also called 98-tone equal temperament (98tet) or 98 equal temperament (98et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 98 equal parts of about 12.2 ¢ each. Each step represents a frequency ratio of 21/98, or the 98th root of 2.

Theory

The patent val of 98edo has a flat 3, a sharp 5 and a slightly flat 7, and tempers out 81/80 in the 5-limit, making it a system of meantone family with a 4-cent-flat fifth. In the 7-limit it tempers out 1029/1024, 1728/1715, supporting mothra temperament, in the 11-limit 176/175 and 540/539, supporting mosura, and in the 13-limit 144/143 and 196/195. It provides the optimal patent val for 13-limit mosura temperament.

Odd harmonics

Approximation of odd harmonics in 98edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.00 +5.52 -1.48 +4.25 -0.30 +4.37 +1.53 +5.25 -3.64 -5.47 -3.78
Relative (%) -32.6 +45.1 -12.1 +34.7 -2.4 +35.7 +12.5 +42.9 -29.7 -44.7 -30.9
Steps
(reduced)
155
(57)
228
(32)
275
(79)
311
(17)
339
(45)
363
(69)
383
(89)
401
(9)
416
(24)
430
(38)
443
(51)

Subsets and supersets

Since 98 factors into 2 × 72, 98edo has subset edos 2, 7, 14, and 49.

Intervals

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 12.2 ^D, vE♭♭
2 24.5 ^^D, E♭♭
3 36.7 ^3D, ^E♭♭
4 49 35/34 v3D♯, ^^E♭♭
5 61.2 29/28, 30/29 vvD♯, ^3E♭♭
6 73.5 24/23 vD♯, v3E♭
7 85.7 41/39 D♯, vvE♭
8 98 37/35 ^D♯, vE♭
9 110.2 16/15 ^^D♯, E♭
10 122.4 44/41 ^3D♯, ^E♭
11 134.7 40/37 v3D𝄪, ^^E♭
12 146.9 37/34 vvD𝄪, ^3E♭
13 159.2 23/21, 34/31 vD𝄪, v3E
14 171.4 21/19, 32/29, 43/39 D𝄪, vvE
15 183.7 ^D𝄪, vE
16 195.9 E
17 208.2 35/31, 44/39 ^E, vF♭
18 220.4 ^^E, F♭
19 232.7 8/7 ^3E, ^F♭
20 244.9 38/33 v3E♯, ^^F♭
21 257.1 vvE♯, ^3F♭
22 269.4 7/6 vE♯, v3F
23 281.6 20/17 E♯, vvF
24 293.9 ^E♯, vF
25 306.1 31/26, 37/31 F
26 318.4 ^F, vG♭♭
27 330.6 23/19 ^^F, G♭♭
28 342.9 28/23, 39/32 ^3F, ^G♭♭
29 355.1 43/35 v3F♯, ^^G♭♭
30 367.3 vvF♯, ^3G♭♭
31 379.6 vF♯, v3G♭
32 391.8 F♯, vvG♭
33 404.1 24/19, 43/34 ^F♯, vG♭
34 416.3 14/11 ^^F♯, G♭
35 428.6 41/32 ^3F♯, ^G♭
36 440.8 40/31 v3F𝄪, ^^G♭
37 453.1 13/10 vvF𝄪, ^3G♭
38 465.3 17/13 vF𝄪, v3G
39 477.6 29/22 F𝄪, vvG
40 489.8 ^F𝄪, vG
41 502 G
42 514.3 35/26, 39/29 ^G, vA♭♭
43 526.5 19/14 ^^G, A♭♭
44 538.8 15/11, 41/30 ^3G, ^A♭♭
45 551 11/8 v3G♯, ^^A♭♭
46 563.3 vvG♯, ^3A♭♭
47 575.5 39/28 vG♯, v3A♭
48 587.8 G♯, vvA♭
49 600 41/29 ^G♯, vA♭
50 612.2 37/26 ^^G♯, A♭
51 624.5 33/23, 43/30 ^3G♯, ^A♭
52 636.7 v3G𝄪, ^^A♭
53 649 16/11 vvG𝄪, ^3A♭
54 661.2 22/15, 41/28 vG𝄪, v3A
55 673.5 28/19 G𝄪, vvA
56 685.7 ^G𝄪, vA
57 698 A
58 710.2 ^A, vB♭♭
59 722.4 44/29 ^^A, B♭♭
60 734.7 26/17 ^3A, ^B♭♭
61 746.9 20/13 v3A♯, ^^B♭♭
62 759.2 31/20 vvA♯, ^3B♭♭
63 771.4 vA♯, v3B♭
64 783.7 11/7 A♯, vvB♭
65 795.9 19/12 ^A♯, vB♭
66 808.2 ^^A♯, B♭
67 820.4 ^3A♯, ^B♭
68 832.7 v3A𝄪, ^^B♭
69 844.9 vvA𝄪, ^3B♭
70 857.1 23/14 vA𝄪, v3B
71 869.4 38/23, 43/26 A𝄪, vvB
72 881.6 ^A𝄪, vB
73 893.9 B
74 906.1 ^B, vC♭
75 918.4 17/10 ^^B, C♭
76 930.6 12/7 ^3B, ^C♭
77 942.9 v3B♯, ^^C♭
78 955.1 33/19 vvB♯, ^3C♭
79 967.3 7/4 vB♯, v3C
80 979.6 B♯, vvC
81 991.8 39/22 ^B♯, vC
82 1004.1 C
83 1016.3 ^C, vD♭♭
84 1028.6 29/16, 38/21 ^^C, D♭♭
85 1040.8 31/17, 42/23 ^3C, ^D♭♭
86 1053.1 v3C♯, ^^D♭♭
87 1065.3 37/20 vvC♯, ^3D♭♭
88 1077.6 41/22 vC♯, v3D♭
89 1089.8 15/8 C♯, vvD♭
90 1102 ^C♯, vD♭
91 1114.3 ^^C♯, D♭
92 1126.5 23/12 ^3C♯, ^D♭
93 1138.8 29/15 v3C𝄪, ^^D♭
94 1151 vvC𝄪, ^3D♭
95 1163.3 vC𝄪, v3D
96 1175.5 C𝄪, vvD
97 1187.8 ^C𝄪, vD
98 1200 2/1 D

Music

Bryan Deister