101edo
← 100edo | 101edo | 102edo → |
101 equal divisions of the octave (abbreviated 101edo or 101ed2), also called 101-tone equal temperament (101tet) or 101 equal temperament (101et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 101 equal parts of about 11.9 ¢ each. Each step represents a frequency ratio of 21/101, or the 101st root of 2.
Theory
101edo is inconsistent in the 5-odd-limit, with harmonics 5 and 7 falling about halfway between its steps. As such, ⟨101 160 235 284] (patent val) and ⟨101 160 234 283] (101cd) are about as viable. Using the patent val, it tempers out 32805/32768 (schisma) and 51018336/48828125 in the 5-limit; 126/125 and 2430/2401 in the 7-limit. It can be used to tune the grackle temperament. The 101cd val provides an excellent tuning for witchcraft temperament, falling between the 13- and 15-odd-limit least squares tuning.
Odd harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | -0.96 | +5.77 | +5.43 | -4.78 | +3.04 | +1.98 | -0.48 | +1.43 | +4.09 | -4.44 |
Relative (%) | +0.0 | -8.1 | +48.5 | +45.7 | -40.3 | +25.6 | +16.6 | -4.1 | +12.0 | +34.4 | -37.4 | |
Steps (reduced) |
101 (0) |
160 (59) |
235 (33) |
284 (82) |
349 (46) |
374 (71) |
413 (9) |
429 (25) |
457 (53) |
491 (87) |
500 (96) |
Subsets and supersets
101edo is the 26th prime edo, following 97edo and before 103edo. 202edo, which doubles it, provides a good correction to the 5th, 7th, and 11th harmonics.
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation |
---|---|---|---|
0 | 0 | 1/1 | D |
1 | 11.9 | ^D, ^^E♭♭ | |
2 | 23.8 | ^^D, ^3E♭♭ | |
3 | 35.6 | ^3D, ^4E♭♭ | |
4 | 47.5 | 37/36, 38/37 | ^4D, v4E♭ |
5 | 59.4 | 29/28, 30/29 | v4D♯, v3E♭ |
6 | 71.3 | 24/23 | v3D♯, vvE♭ |
7 | 83.2 | 21/20, 43/41 | vvD♯, vE♭ |
8 | 95 | 19/18 | vD♯, E♭ |
9 | 106.9 | 17/16, 33/31 | D♯, ^E♭ |
10 | 118.8 | 15/14 | ^D♯, ^^E♭ |
11 | 130.7 | 14/13, 41/38 | ^^D♯, ^3E♭ |
12 | 142.6 | ^3D♯, ^4E♭ | |
13 | 154.5 | ^4D♯, v4E | |
14 | 166.3 | v4D𝄪, v3E | |
15 | 178.2 | 41/37 | v3D𝄪, vvE |
16 | 190.1 | 29/26 | vvD𝄪, vE |
17 | 202 | 9/8 | E |
18 | 213.9 | 26/23, 43/38 | ^E, ^^F♭ |
19 | 225.7 | 41/36 | ^^E, ^3F♭ |
20 | 237.6 | 31/27, 39/34 | ^3E, ^4F♭ |
21 | 249.5 | 15/13, 37/32 | ^4E, v4F |
22 | 261.4 | 43/37 | v4E♯, v3F |
23 | 273.3 | 34/29 | v3E♯, vvF |
24 | 285.1 | vvE♯, vF | |
25 | 297 | 19/16 | F |
26 | 308.9 | 43/36 | ^F, ^^G♭♭ |
27 | 320.8 | ^^F, ^3G♭♭ | |
28 | 332.7 | 23/19 | ^3F, ^4G♭♭ |
29 | 344.6 | 39/32 | ^4F, v4G♭ |
30 | 356.4 | 27/22 | v4F♯, v3G♭ |
31 | 368.3 | 26/21 | v3F♯, vvG♭ |
32 | 380.2 | vvF♯, vG♭ | |
33 | 392.1 | vF♯, G♭ | |
34 | 404 | 24/19 | F♯, ^G♭ |
35 | 415.8 | ^F♯, ^^G♭ | |
36 | 427.7 | 41/32 | ^^F♯, ^3G♭ |
37 | 439.6 | ^3F♯, ^4G♭ | |
38 | 451.5 | ^4F♯, v4G | |
39 | 463.4 | 17/13 | v4F𝄪, v3G |
40 | 475.2 | v3F𝄪, vvG | |
41 | 487.1 | 45/34 | vvF𝄪, vG |
42 | 499 | 4/3 | G |
43 | 510.9 | 39/29, 43/32 | ^G, ^^A♭♭ |
44 | 522.8 | 23/17 | ^^G, ^3A♭♭ |
45 | 534.7 | ^3G, ^4A♭♭ | |
46 | 546.5 | 37/27 | ^4G, v4A♭ |
47 | 558.4 | 29/21, 40/29 | v4G♯, v3A♭ |
48 | 570.3 | 32/23 | v3G♯, vvA♭ |
49 | 582.2 | 7/5 | vvG♯, vA♭ |
50 | 594.1 | 31/22, 38/27 | vG♯, A♭ |
51 | 605.9 | 27/19, 44/31 | G♯, ^A♭ |
52 | 617.8 | 10/7 | ^G♯, ^^A♭ |
53 | 629.7 | 23/16 | ^^G♯, ^3A♭ |
54 | 641.6 | 29/20, 42/29 | ^3G♯, ^4A♭ |
55 | 653.5 | ^4G♯, v4A | |
56 | 665.3 | v4G𝄪, v3A | |
57 | 677.2 | 34/23 | v3G𝄪, vvA |
58 | 689.1 | vvG𝄪, vA | |
59 | 701 | 3/2 | A |
60 | 712.9 | ^A, ^^B♭♭ | |
61 | 724.8 | 41/27 | ^^A, ^3B♭♭ |
62 | 736.6 | 26/17 | ^3A, ^4B♭♭ |
63 | 748.5 | 37/24 | ^4A, v4B♭ |
64 | 760.4 | 45/29 | v4A♯, v3B♭ |
65 | 772.3 | v3A♯, vvB♭ | |
66 | 784.2 | vvA♯, vB♭ | |
67 | 796 | 19/12 | vA♯, B♭ |
68 | 807.9 | 43/27 | A♯, ^B♭ |
69 | 819.8 | 45/28 | ^A♯, ^^B♭ |
70 | 831.7 | 21/13 | ^^A♯, ^3B♭ |
71 | 843.6 | 44/27 | ^3A♯, ^4B♭ |
72 | 855.4 | ^4A♯, v4B | |
73 | 867.3 | 38/23 | v4A𝄪, v3B |
74 | 879.2 | v3A𝄪, vvB | |
75 | 891.1 | vvA𝄪, vB | |
76 | 903 | 32/19 | B |
77 | 914.9 | 39/23 | ^B, ^^C♭ |
78 | 926.7 | 29/17, 41/24 | ^^B, ^3C♭ |
79 | 938.6 | ^3B, ^4C♭ | |
80 | 950.5 | 26/15, 45/26 | ^4B, v4C |
81 | 962.4 | v4B♯, v3C | |
82 | 974.3 | v3B♯, vvC | |
83 | 986.1 | 23/13 | vvB♯, vC |
84 | 998 | 16/9 | C |
85 | 1009.9 | 43/24 | ^C, ^^D♭♭ |
86 | 1021.8 | ^^C, ^3D♭♭ | |
87 | 1033.7 | ^3C, ^4D♭♭ | |
88 | 1045.5 | ^4C, v4D♭ | |
89 | 1057.4 | v4C♯, v3D♭ | |
90 | 1069.3 | 13/7 | v3C♯, vvD♭ |
91 | 1081.2 | 28/15, 43/23 | vvC♯, vD♭ |
92 | 1093.1 | 32/17 | vC♯, D♭ |
93 | 1105 | 36/19 | C♯, ^D♭ |
94 | 1116.8 | 40/21 | ^C♯, ^^D♭ |
95 | 1128.7 | 23/12 | ^^C♯, ^3D♭ |
96 | 1140.6 | 29/15 | ^3C♯, ^4D♭ |
97 | 1152.5 | 37/19 | ^4C♯, v4D |
98 | 1164.4 | 45/23 | v4C𝄪, v3D |
99 | 1176.2 | v3C𝄪, vvD | |
100 | 1188.1 | vvC𝄪, vD | |
101 | 1200 | 2/1 | D |
Scales
Mos scales
- 3L 2s: 25 13 25 25 13 ((25 38 63 88 101)\101)[clarification needed]
- Grackle[7] 5L 2s: 17 17 8 17 17 17 8 ((17 34 42 59 76 93)\101)
- Grumpy Octatonic 7L 1s: 13 13 13 13 13 13 13 10 ((13 26 39 52 65 78 91 101)\101)
- Superdiatonic 1/13-tone 13;5 relation: 13 13 13 5 13 13 13 13 5 ((13 26 39 44 57 70 83 96 101)\101)
- Sensi[11] 8L 3s: 10 10 7 10 10 10 7 10 10 10 7 ((10 20 27 37 47 57 64 74 84 94)\101)[clarification needed]
- Anti-Ketradektriatoh 3L 11s: 7 7 7 8 7 7 7 7 8 7 7 7 7 8 ((7 14 22 29 36 43 50 58 65 72 79 86 93 101)\101)