86edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 85edo 86edo 87edo →
Prime factorization 2 × 43
Step size 13.9535¢ 
Fifth 50\86 (697.674¢) (→25\43)
Semitones (A1:m2) 6:8 (83.72¢ : 111.6¢)
Consistency limit 3
Distinct consistency limit 3

86 equal divisions of the octave (abbreviated 86edo or 86ed2), also called 86-tone equal temperament (86tet) or 86 equal temperament (86et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 86 equal parts of about 14 ¢ each. Each step represents a frequency ratio of 21/86, or the 86th root of 2.

Theory

86 = 2 × 43, and the patent val is a contorted 43edo in the 5-limit. In the 7-limit the patent val tempers out 6144/6125, so that it supports the mohajira temperament. In the 11-limit it tempers out 245/242, 540/539 and 4000/3993, and in the 13-limit 144/143, 196/195 and 676/675. It provides the optimal patent val for the 13-limit 9 & 86 temperament tempering out 144/143, 196/195, 245/242 and 676/675.

It is perhaps more interesting to consider the alternative 86e val, which tempers out 121/120 and 243/242 and supports 11-limit mohajira. The 86de val is a less good entry for 11-limit migration. In any case, this tuning is between 31edo and 55edo, and replaces 43edo's lopsided placement of 11/9 and 27/22 with a true neutral third.

86edo is closely related to the delta scale, which is the equal division of the classic diatonic semitone into eight parts of 13.9664 cents each.

Odd harmonics

Approximation of odd harmonics in 86edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error Absolute (¢) -4.28 +4.38 -6.04 +5.39 +6.82 -3.32 +0.10 +6.67 -4.49 +3.64 -0.37
Relative (%) -30.7 +31.4 -43.3 +38.6 +48.9 -23.8 +0.7 +47.8 -32.2 +26.1 -2.6
Steps
(reduced)
136
(50)
200
(28)
241
(69)
273
(15)
298
(40)
318
(60)
336
(78)
352
(8)
365
(21)
378
(34)
389
(45)

Subsets and supersets

86edo contains 2edo and 43edo as subsets. 258edo, which triples it, is a notable tuning.

Interval table

Steps Cents Approximate ratios Ups and downs notation
0 0 1/1 D
1 14 ^D, vE♭♭
2 27.9 ^^D, E♭♭
3 41.9 41/40 ^3D, ^E♭♭
4 55.8 30/29, 31/30, 32/31, 33/32 vvD♯, ^^E♭♭
5 69.8 vD♯, v3E♭
6 83.7 D♯, vvE♭
7 97.7 37/35 ^D♯, vE♭
8 111.6 16/15 ^^D♯, E♭
9 125.6 14/13 ^3D♯, ^E♭
10 139.5 13/12, 38/35 vvD𝄪, ^^E♭
11 153.5 35/32 vD𝄪, v3E
12 167.4 11/10 D𝄪, vvE
13 181.4 ^D𝄪, vE
14 195.3 37/33 E
15 209.3 26/23, 35/31 ^E, vF♭
16 223.3 25/22, 33/29 ^^E, F♭
17 237.2 ^3E, ^F♭
18 251.2 37/32 vvE♯, ^^F♭
19 265.1 7/6 vE♯, v3F
20 279.1 20/17 E♯, vvF
21 293 ^E♯, vF
22 307 31/26, 37/31 F
23 320.9 ^F, vG♭♭
24 334.9 40/33 ^^F, G♭♭
25 348.8 ^3F, ^G♭♭
26 362.8 37/30 vvF♯, ^^G♭♭
27 376.7 41/33 vF♯, v3G♭
28 390.7 F♯, vvG♭
29 404.7 24/19 ^F♯, vG♭
30 418.6 ^^F♯, G♭
31 432.6 9/7 ^3F♯, ^G♭
32 446.5 22/17 vvF𝄪, ^^G♭
33 460.5 30/23 vF𝄪, v3G
34 474.4 F𝄪, vvG
35 488.4 ^F𝄪, vG
36 502.3 G
37 516.3 31/23, 35/26 ^G, vA♭♭
38 530.2 19/14, 34/25 ^^G, A♭♭
39 544.2 26/19 ^3G, ^A♭♭
40 558.1 40/29 vvG♯, ^^A♭♭
41 572.1 32/23, 39/28 vG♯, v3A♭
42 586 G♯, vvA♭
43 600 41/29 ^G♯, vA♭
44 614 ^^G♯, A♭
45 627.9 23/16, 33/23 ^3G♯, ^A♭
46 641.9 29/20 vvG𝄪, ^^A♭
47 655.8 19/13, 35/24 vG𝄪, v3A
48 669.8 25/17, 28/19 G𝄪, vvA
49 683.7 ^G𝄪, vA
50 697.7 A
51 711.6 ^A, vB♭♭
52 725.6 35/23 ^^A, B♭♭
53 739.5 23/15 ^3A, ^B♭♭
54 753.5 17/11 vvA♯, ^^B♭♭
55 767.4 14/9 vA♯, v3B♭
56 781.4 A♯, vvB♭
57 795.3 19/12 ^A♯, vB♭
58 809.3 ^^A♯, B♭
59 823.3 37/23 ^3A♯, ^B♭
60 837.2 vvA𝄪, ^^B♭
61 851.2 vA𝄪, v3B
62 865.1 33/20 A𝄪, vvB
63 879.1 ^A𝄪, vB
64 893 B
65 907 ^B, vC♭
66 920.9 17/10 ^^B, C♭
67 934.9 12/7 ^3B, ^C♭
68 948.8 vvB♯, ^^C♭
69 962.8 vB♯, v3C
70 976.7 B♯, vvC
71 990.7 23/13 ^B♯, vC
72 1004.7 C
73 1018.6 ^C, vD♭♭
74 1032.6 20/11 ^^C, D♭♭
75 1046.5 ^3C, ^D♭♭
76 1060.5 24/13, 35/19 vvC♯, ^^D♭♭
77 1074.4 13/7 vC♯, v3D♭
78 1088.4 15/8 C♯, vvD♭
79 1102.3 ^C♯, vD♭
80 1116.3 ^^C♯, D♭
81 1130.2 ^3C♯, ^D♭
82 1144.2 29/15, 31/16 vvC𝄪, ^^D♭
83 1158.1 vC𝄪, v3D
84 1172.1 C𝄪, vvD
85 1186 ^C𝄪, vD
86 1200 2/1 D