1L 7s

From Xenharmonic Wiki
Jump to navigation Jump to search
↑ 1L 6s 2L 6s ↗
1L 7s 2L 7s →
↓ 1L 8s 2L 8s ↘
┌╥┬┬┬┬┬┬┬┐
│║││││││││
││││││││││
└┴┴┴┴┴┴┴┴┘
Scale structure
Step pattern Lsssssss
sssssssL
Equave 2/1 (1200.0¢)
Period 2/1 (1200.0¢)
Generator size
Bright 7\8 to 1\1 (1050.0¢ to 1200.0¢)
Dark 0\1 to 1\8 (0.0¢ to 150.0¢)
Related MOS scales
Parent 1L 6s
Sister 7L 1s
Daughters 8L 1s, 1L 8s
Neutralized 2L 6s
2-Flought 9L 7s, 1L 15s
Equal tunings
Equalized (L:s = 1:1) 7\8 (1050.0¢)
Supersoft (L:s = 4:3) 22\25 (1056.0¢)
Soft (L:s = 3:2) 15\17 (1058.8¢)
Semisoft (L:s = 5:3) 23\26 (1061.5¢)
Basic (L:s = 2:1) 8\9 (1066.7¢)
Semihard (L:s = 5:2) 17\19 (1073.7¢)
Hard (L:s = 3:1) 9\10 (1080.0¢)
Superhard (L:s = 4:1) 10\11 (1090.9¢)
Collapsed (L:s = 1:0) 1\1 (1200.0¢)

1L 7s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 7 small steps, repeating every octave. Generators that produce this scale range from 1050¢ to 1200¢, or from 0¢ to 150¢. This MOS pattern is somewhat of a wasteland as far as low-harmonic-entropy scales are concerned. However, there is one interesting no-5's scale, bleu. In this scale, 5 steps make a 3/2, and the chord 11:12:13:14 is represented as three equal steps.

Name

TAMNAMS suggests the temperament-agnostic name antipine as the name of 1L 7s. The name is based on being the opposite pattern of 7L 1s (pine).

Scale properties

Intervals

The intervals of 1L 7s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the root and octave (perfect 0-mosstep and perfect 8-mosstep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.

Intervals of 1L 7s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-mosstep Perfect 0-mosstep P0ms 0 0.0¢
1-mosstep Perfect 1-mosstep P1ms s 0.0¢ to 150.0¢
Augmented 1-mosstep A1ms L 150.0¢ to 1200.0¢
2-mosstep Minor 2-mosstep m2ms 2s 0.0¢ to 300.0¢
Major 2-mosstep M2ms L + s 300.0¢ to 1200.0¢
3-mosstep Minor 3-mosstep m3ms 3s 0.0¢ to 450.0¢
Major 3-mosstep M3ms L + 2s 450.0¢ to 1200.0¢
4-mosstep Minor 4-mosstep m4ms 4s 0.0¢ to 600.0¢
Major 4-mosstep M4ms L + 3s 600.0¢ to 1200.0¢
5-mosstep Minor 5-mosstep m5ms 5s 0.0¢ to 750.0¢
Major 5-mosstep M5ms L + 4s 750.0¢ to 1200.0¢
6-mosstep Minor 6-mosstep m6ms 6s 0.0¢ to 900.0¢
Major 6-mosstep M6ms L + 5s 900.0¢ to 1200.0¢
7-mosstep Diminished 7-mosstep d7ms 7s 0.0¢ to 1050.0¢
Perfect 7-mosstep P7ms L + 6s 1050.0¢ to 1200.0¢
8-mosstep Perfect 8-mosstep P8ms L + 7s 1200.0¢

Generator chain

A chain of bright generators, each a perfect 7-mosstep, produces the following scale degrees. A chain of 8 bright generators contains the scale degrees of one of the modes of 1L 7s. Expanding the chain to 9 scale degrees produces the modes of either 8L 1s (for soft-of-basic tunings) or 1L 8s (for hard-of-basic tunings).

Generator chain of 1L 7s
Bright gens Scale Degree - 8 Augmented 0-mosdegree A0md
7 Augmented 1-mosdegree A1md
6 Major 2-mosdegree M2md
5 Major 3-mosdegree M3md
4 Major 4-mosdegree M4md
3 Major 5-mosdegree M5md
2 Major 6-mosdegree M6md
1 Perfect 7-mosdegree P7md
0 Perfect 0-mosdegree
Perfect 8-mosdegree
P0md
P8md
-1 Perfect 1-mosdegree P1md
-2 Minor 2-mosdegree m2md
-3 Minor 3-mosdegree m3md
-4 Minor 4-mosdegree m4md
-5 Minor 5-mosdegree m5md
-6 Minor 6-mosdegree m6md
-7 Diminished 7-mosdegree d7md
-8 Diminished 8-mosdegree d8md

Modes

Scale degrees of the modes of 1L 7s 
UDP Cyclic
order
Step
pattern
Scale degree (mosdegree)
0 1 2 3 4 5 6 7 8
7|0 1 Lsssssss Perf. Aug. Maj. Maj. Maj. Maj. Maj. Perf. Perf.
6|1 8 sLssssss Perf. Perf. Maj. Maj. Maj. Maj. Maj. Perf. Perf.
5|2 7 ssLsssss Perf. Perf. Min. Maj. Maj. Maj. Maj. Perf. Perf.
4|3 6 sssLssss Perf. Perf. Min. Min. Maj. Maj. Maj. Perf. Perf.
3|4 5 ssssLsss Perf. Perf. Min. Min. Min. Maj. Maj. Perf. Perf.
2|5 4 sssssLss Perf. Perf. Min. Min. Min. Min. Maj. Perf. Perf.
1|6 3 ssssssLs Perf. Perf. Min. Min. Min. Min. Min. Perf. Perf.
0|7 2 sssssssL Perf. Perf. Min. Min. Min. Min. Min. Dim. Perf.

Scale tree

Generator ranges:

  • Chroma-positive generator: 1050 cents (7\8) to 1200 cents (1\1)
  • Chroma-negative generator: 0 cents (0\1) to 150 cents (1\8)
Small step
(chroma-negative generator)
Cents L s L/s Comments
1\8 150.000 1 1 1.000
5\41 146.341 6 5 1.200 Bohpier
4\33 145.455 5 4 1.250
7\58 144.828 9 7 1.286
3\25 144.000 4 3 1.333
8\67 143.284 11 8 1.375
5\42 142.857 7 5 1.400
7\59 142.373 10 7 1.429
2\17 141.176 3 2 1.500
7\60 140.000 11 7 1.571 Bleu
5\43 139.535 8 5 1.600 Jerome/bleu
8\69 139.130 13 8 1.625 Golden jerome (139.2429¢)
3\26 138.462 5 3 1.667
7\61 137.705 12 7 1.714
4\35 137.143 7 4 1.750
5\44 136.364 9 5 1.800 Twothirdtonic
1\9 133.333 2 1 2.000 Basic 1L 7s
(small steps larger than this are proper)
4\37 129.730 9 4 2.250
3\28 128.571 7 3 2.333
5\47 127.660 12 5 2.400
2\19 126.316 5 2 2.500 Negri
5\48 125.000 13 5 2.600 Golden negri (124.7656¢)
3\29 124.138 8 3 2.667
4\39 123.077 11 4 2.750
1\10 120.000 3 1 3.000
3\31 116.129 10 3 3.333 Miracle
2\21 114.286 7 2 3.500
3\32 112.500 11 3 3.667
1\11 109.091 4 1 4.000
2\23 104.348 9 2 4.500
1\12 100.000 5 1 5.000 Passion, ripple
1\13 92.308 6 1 6.000
0\1 0.000 1 0 → inf

Trivia

This scale is a leap year pattern of the tabular Iranian calendar, where the leap year is inserted 7 times once in 4 years, with 1 gap of 5 years. Curiously enough, one short step of this scale is close to the one step of Bohlen-Pierce.