1L 7s
↑ 1L 6s | 2L 6s ↗ | |
1L 7s | 2L 7s → | |
↓ 1L 8s | 2L 8s ↘ |
┌╥┬┬┬┬┬┬┬┐ │║││││││││ ││││││││││ └┴┴┴┴┴┴┴┴┘
sssssssL
1L 7s, named antipine in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 7 small steps, repeating every octave. Generators that produce this scale range from 1050 ¢ to 1200 ¢, or from 0 ¢ to 150 ¢. This MOS pattern is somewhat of a wasteland as far as low-harmonic-entropy scales are concerned. However, there is one interesting no-5's scale, bleu. In this scale, 5 steps make a 3/2, and the chord 11:12:13:14 is represented as three equal steps.
Name
TAMNAMS suggests the temperament-agnostic name antipine as the name of 1L 7s. The name is based on being the opposite pattern of 7L 1s (pine).
Scale properties
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-apinestep | Perfect 0-apinestep | P0aps | 0 | 0.0 ¢ |
1-apinestep | Perfect 1-apinestep | P1aps | s | 0.0 ¢ to 150.0 ¢ |
Augmented 1-apinestep | A1aps | L | 150.0 ¢ to 1200.0 ¢ | |
2-apinestep | Minor 2-apinestep | m2aps | 2s | 0.0 ¢ to 300.0 ¢ |
Major 2-apinestep | M2aps | L + s | 300.0 ¢ to 1200.0 ¢ | |
3-apinestep | Minor 3-apinestep | m3aps | 3s | 0.0 ¢ to 450.0 ¢ |
Major 3-apinestep | M3aps | L + 2s | 450.0 ¢ to 1200.0 ¢ | |
4-apinestep | Minor 4-apinestep | m4aps | 4s | 0.0 ¢ to 600.0 ¢ |
Major 4-apinestep | M4aps | L + 3s | 600.0 ¢ to 1200.0 ¢ | |
5-apinestep | Minor 5-apinestep | m5aps | 5s | 0.0 ¢ to 750.0 ¢ |
Major 5-apinestep | M5aps | L + 4s | 750.0 ¢ to 1200.0 ¢ | |
6-apinestep | Minor 6-apinestep | m6aps | 6s | 0.0 ¢ to 900.0 ¢ |
Major 6-apinestep | M6aps | L + 5s | 900.0 ¢ to 1200.0 ¢ | |
7-apinestep | Diminished 7-apinestep | d7aps | 7s | 0.0 ¢ to 1050.0 ¢ |
Perfect 7-apinestep | P7aps | L + 6s | 1050.0 ¢ to 1200.0 ¢ | |
8-apinestep | Perfect 8-apinestep | P8aps | L + 7s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
8 | Augmented 0-apinedegree | A0apd |
7 | Augmented 1-apinedegree | A1apd |
6 | Major 2-apinedegree | M2apd |
5 | Major 3-apinedegree | M3apd |
4 | Major 4-apinedegree | M4apd |
3 | Major 5-apinedegree | M5apd |
2 | Major 6-apinedegree | M6apd |
1 | Perfect 7-apinedegree | P7apd |
0 | Perfect 0-apinedegree Perfect 8-apinedegree |
P0apd P8apd |
−1 | Perfect 1-apinedegree | P1apd |
−2 | Minor 2-apinedegree | m2apd |
−3 | Minor 3-apinedegree | m3apd |
−4 | Minor 4-apinedegree | m4apd |
−5 | Minor 5-apinedegree | m5apd |
−6 | Minor 6-apinedegree | m6apd |
−7 | Diminished 7-apinedegree | d7apd |
−8 | Diminished 8-apinedegree | d8apd |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (apinedegree) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
7|0 | 1 | Lsssssss | Perf. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
6|1 | 8 | sLssssss | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
5|2 | 7 | ssLsssss | Perf. | Perf. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
4|3 | 6 | sssLssss | Perf. | Perf. | Min. | Min. | Maj. | Maj. | Maj. | Perf. | Perf. |
3|4 | 5 | ssssLsss | Perf. | Perf. | Min. | Min. | Min. | Maj. | Maj. | Perf. | Perf. |
2|5 | 4 | sssssLss | Perf. | Perf. | Min. | Min. | Min. | Min. | Maj. | Perf. | Perf. |
1|6 | 3 | ssssssLs | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
0|7 | 2 | sssssssL | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Dim. | Perf. |
Scale tree
Generator ranges:
- Chroma-positive generator: 1050 ¢ (7\8) to 1200 ¢ (1\1)
- Chroma-negative generator: 0 ¢ (0\1) to 150 ¢ (1\8)
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\8 | 1050.000 | 150.000 | 1:1 | 1.000 | Equalized 1L 7s | |||||
36\41 | 1053.659 | 146.341 | 6:5 | 1.200 | Bohpier | |||||
29\33 | 1054.545 | 145.455 | 5:4 | 1.250 | ||||||
51\58 | 1055.172 | 144.828 | 9:7 | 1.286 | ||||||
22\25 | 1056.000 | 144.000 | 4:3 | 1.333 | Supersoft 1L 7s | |||||
59\67 | 1056.716 | 143.284 | 11:8 | 1.375 | ||||||
37\42 | 1057.143 | 142.857 | 7:5 | 1.400 | ||||||
52\59 | 1057.627 | 142.373 | 10:7 | 1.429 | ||||||
15\17 | 1058.824 | 141.176 | 3:2 | 1.500 | Soft 1L 7s | |||||
53\60 | 1060.000 | 140.000 | 11:7 | 1.571 | Bleu | |||||
38\43 | 1060.465 | 139.535 | 8:5 | 1.600 | Jerome/bleu | |||||
61\69 | 1060.870 | 139.130 | 13:8 | 1.625 | Golden jerome (139.2429 ¢) | |||||
23\26 | 1061.538 | 138.462 | 5:3 | 1.667 | Semisoft 1L 7s | |||||
54\61 | 1062.295 | 137.705 | 12:7 | 1.714 | ||||||
31\35 | 1062.857 | 137.143 | 7:4 | 1.750 | ||||||
39\44 | 1063.636 | 136.364 | 9:5 | 1.800 | Twothirdtonic | |||||
8\9 | 1066.667 | 133.333 | 2:1 | 2.000 | Basic 1L 7s Scales with tunings softer than this are proper | |||||
33\37 | 1070.270 | 129.730 | 9:4 | 2.250 | ||||||
25\28 | 1071.429 | 128.571 | 7:3 | 2.333 | ||||||
42\47 | 1072.340 | 127.660 | 12:5 | 2.400 | ||||||
17\19 | 1073.684 | 126.316 | 5:2 | 2.500 | Semihard 1L 7s Negri | |||||
43\48 | 1075.000 | 125.000 | 13:5 | 2.600 | Golden negri (124.7656 ¢) | |||||
26\29 | 1075.862 | 124.138 | 8:3 | 2.667 | ||||||
35\39 | 1076.923 | 123.077 | 11:4 | 2.750 | ||||||
9\10 | 1080.000 | 120.000 | 3:1 | 3.000 | Hard 1L 7s | |||||
28\31 | 1083.871 | 116.129 | 10:3 | 3.333 | Miracle | |||||
19\21 | 1085.714 | 114.286 | 7:2 | 3.500 | ||||||
29\32 | 1087.500 | 112.500 | 11:3 | 3.667 | ||||||
10\11 | 1090.909 | 109.091 | 4:1 | 4.000 | Superhard 1L 7s | |||||
21\23 | 1095.652 | 104.348 | 9:2 | 4.500 | ||||||
11\12 | 1100.000 | 100.000 | 5:1 | 5.000 | Passion, ripple | |||||
12\13 | 1107.692 | 92.308 | 6:1 | 6.000 | ||||||
1\1 | 1200.000 | 0.000 | 1:0 | → ∞ | Collapsed 1L 7s |
Trivia
This scale is a leap year pattern of the tabular Iranian calendar, where the leap year is inserted 7 times once in 4 years, with 1 gap of 5 years. Curiously enough, one short step of this scale is close to the one step of the Bohlen–Pierce scale.