1L 7s
↑ 1L 6s | 2L 6s ↗ | |
1L 7s | 2L 7s → | |
↓ 1L 8s | 2L 8s ↘ |
┌╥┬┬┬┬┬┬┬┐ │║││││││││ ││││││││││ └┴┴┴┴┴┴┴┴┘
sssssssL
1L 7s, named antipine in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 7 small steps, repeating every octave. Generators that produce this scale range from 1050¢ to 1200¢, or from 0¢ to 150¢. This MOS pattern is somewhat of a wasteland as far as low-harmonic-entropy scales are concerned. However, there is one interesting no-5's scale, bleu. In this scale, 5 steps make a 3/2, and the chord 11:12:13:14 is represented as three equal steps.
Name
TAMNAMS suggests the temperament-agnostic name antipine as the name of 1L 7s. The name is based on being the opposite pattern of 7L 1s (pine).
Scale properties
Intervals
The intervals of 1L 7s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the root and octave (perfect 0-apinestep and perfect 8-apinestep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-apinestep | Perfect 0-apinestep | P0aps | 0 | 0.0¢ |
1-apinestep | Perfect 1-apinestep | P1aps | s | 0.0¢ to 150.0¢ |
Augmented 1-apinestep | A1aps | L | 150.0¢ to 1200.0¢ | |
2-apinestep | Minor 2-apinestep | m2aps | 2s | 0.0¢ to 300.0¢ |
Major 2-apinestep | M2aps | L + s | 300.0¢ to 1200.0¢ | |
3-apinestep | Minor 3-apinestep | m3aps | 3s | 0.0¢ to 450.0¢ |
Major 3-apinestep | M3aps | L + 2s | 450.0¢ to 1200.0¢ | |
4-apinestep | Minor 4-apinestep | m4aps | 4s | 0.0¢ to 600.0¢ |
Major 4-apinestep | M4aps | L + 3s | 600.0¢ to 1200.0¢ | |
5-apinestep | Minor 5-apinestep | m5aps | 5s | 0.0¢ to 750.0¢ |
Major 5-apinestep | M5aps | L + 4s | 750.0¢ to 1200.0¢ | |
6-apinestep | Minor 6-apinestep | m6aps | 6s | 0.0¢ to 900.0¢ |
Major 6-apinestep | M6aps | L + 5s | 900.0¢ to 1200.0¢ | |
7-apinestep | Diminished 7-apinestep | d7aps | 7s | 0.0¢ to 1050.0¢ |
Perfect 7-apinestep | P7aps | L + 6s | 1050.0¢ to 1200.0¢ | |
8-apinestep | Perfect 8-apinestep | P8aps | L + 7s | 1200.0¢ |
Generator chain
A chain of bright generators, each a perfect 7-apinestep, produces the following scale degrees. A chain of 8 bright generators contains the scale degrees of one of the modes of 1L 7s. Expanding the chain to 9 scale degrees produces the modes of either 8L 1s (for soft-of-basic tunings) or 1L 8s (for hard-of-basic tunings).
Bright gens | Scale Degree | Abbrev. |
---|---|---|
8 | Augmented 0-apinedegree | A0apd |
7 | Augmented 1-apinedegree | A1apd |
6 | Major 2-apinedegree | M2apd |
5 | Major 3-apinedegree | M3apd |
4 | Major 4-apinedegree | M4apd |
3 | Major 5-apinedegree | M5apd |
2 | Major 6-apinedegree | M6apd |
1 | Perfect 7-apinedegree | P7apd |
0 | Perfect 0-apinedegree Perfect 8-apinedegree |
P0apd P8apd |
-1 | Perfect 1-apinedegree | P1apd |
-2 | Minor 2-apinedegree | m2apd |
-3 | Minor 3-apinedegree | m3apd |
-4 | Minor 4-apinedegree | m4apd |
-5 | Minor 5-apinedegree | m5apd |
-6 | Minor 6-apinedegree | m6apd |
-7 | Diminished 7-apinedegree | d7apd |
-8 | Diminished 8-apinedegree | d8apd |
Modes
UDP | Cyclic Order |
Step Pattern |
Scale Degree (apinedegree) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |||
7|0 | 1 | Lsssssss | Perf. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
6|1 | 8 | sLssssss | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
5|2 | 7 | ssLsssss | Perf. | Perf. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
4|3 | 6 | sssLssss | Perf. | Perf. | Min. | Min. | Maj. | Maj. | Maj. | Perf. | Perf. |
3|4 | 5 | ssssLsss | Perf. | Perf. | Min. | Min. | Min. | Maj. | Maj. | Perf. | Perf. |
2|5 | 4 | sssssLss | Perf. | Perf. | Min. | Min. | Min. | Min. | Maj. | Perf. | Perf. |
1|6 | 3 | ssssssLs | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
0|7 | 2 | sssssssL | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Dim. | Perf. |
Scale tree
Generator ranges:
- Chroma-positive generator: 1050 cents (7\8) to 1200 cents (1\1)
- Chroma-negative generator: 0 cents (0\1) to 150 cents (1\8)
Small step (chroma-negative generator) |
Cents | L | s | L/s | Comments | |||||
---|---|---|---|---|---|---|---|---|---|---|
1\8 | 150.000 | 1 | 1 | 1.000 | ||||||
5\41 | 146.341 | 6 | 5 | 1.200 | Bohpier | |||||
4\33 | 145.455 | 5 | 4 | 1.250 | ||||||
7\58 | 144.828 | 9 | 7 | 1.286 | ||||||
3\25 | 144.000 | 4 | 3 | 1.333 | ||||||
8\67 | 143.284 | 11 | 8 | 1.375 | ||||||
5\42 | 142.857 | 7 | 5 | 1.400 | ||||||
7\59 | 142.373 | 10 | 7 | 1.429 | ||||||
2\17 | 141.176 | 3 | 2 | 1.500 | ||||||
7\60 | 140.000 | 11 | 7 | 1.571 | Bleu | |||||
5\43 | 139.535 | 8 | 5 | 1.600 | Jerome/bleu | |||||
8\69 | 139.130 | 13 | 8 | 1.625 | Golden jerome (139.2429¢) | |||||
3\26 | 138.462 | 5 | 3 | 1.667 | ||||||
7\61 | 137.705 | 12 | 7 | 1.714 | ||||||
4\35 | 137.143 | 7 | 4 | 1.750 | ||||||
5\44 | 136.364 | 9 | 5 | 1.800 | Twothirdtonic | |||||
1\9 | 133.333 | 2 | 1 | 2.000 | Basic 1L 7s (small steps larger than this are proper) | |||||
4\37 | 129.730 | 9 | 4 | 2.250 | ||||||
3\28 | 128.571 | 7 | 3 | 2.333 | ||||||
5\47 | 127.660 | 12 | 5 | 2.400 | ||||||
2\19 | 126.316 | 5 | 2 | 2.500 | Negri | |||||
5\48 | 125.000 | 13 | 5 | 2.600 | Golden negri (124.7656¢) | |||||
3\29 | 124.138 | 8 | 3 | 2.667 | ||||||
4\39 | 123.077 | 11 | 4 | 2.750 | ||||||
1\10 | 120.000 | 3 | 1 | 3.000 | ||||||
3\31 | 116.129 | 10 | 3 | 3.333 | Miracle | |||||
2\21 | 114.286 | 7 | 2 | 3.500 | ||||||
3\32 | 112.500 | 11 | 3 | 3.667 | ||||||
1\11 | 109.091 | 4 | 1 | 4.000 | ||||||
2\23 | 104.348 | 9 | 2 | 4.500 | ||||||
1\12 | 100.000 | 5 | 1 | 5.000 | Passion, ripple | |||||
1\13 | 92.308 | 6 | 1 | 6.000 | ||||||
0\1 | 0.000 | 1 | 0 | → inf |
Trivia
This scale is a leap year pattern of the tabular Iranian calendar, where the leap year is inserted 7 times once in 4 years, with 1 gap of 5 years. Curiously enough, one short step of this scale is close to the one step of Bohlen-Pierce.