69edo
← 68edo | 69edo | 70edo → |
69 equal divisions of the octave (abbreviated 69edo or 69ed2), also called 69-tone equal temperament (69tet) or 69 equal temperament (69et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 69 equal parts of about 17.4 ¢ each. Each step represents a frequency ratio of 21/69, or the 69th root of 2. Nice.
Theory
69edo has been called "the love-child of 23edo and quarter-comma meantone". As a meantone system, it is on the flat side, with a fifth of 695.652 cents. Such a fifth is closer to 2/7-comma meantone than 1/4-comma, and is nearly identical to that of "Synch-Meantone", or Wilson's equal beating meantone, wherein the perfect fifth and the major third beat at equal rates. Therefore 69edo can be treated as a closed system of Synch-Meantone for most purposes.
69edo offers two kinds of meantone 12-tone scales. One is the raw meantone scale, which has a 7:4 step ratio, and other is period-3 lithium scale, which has a 6:5 step ratio and stems from a temperament tempering out 3125/3087 along with 81/80. It should be noted that while the lithium scale has a meantone fifth, it produces a tcherepnin scale instead of traditional diatonic.
In the 7-limit it is a mohajira system, tempering out 6144/6125, but not a septimal meantone system, as 126/125 maps to one step. In the 11-limit it tempers out 99/98, and supports the 31&69 variant of mohajira, identical to the standard 11-limit mohajira in 31edo but not in 69.
The concoctic scale for 69edo is 22\69, and the corresponding rank two temperament is 22 & 69, defined by tempering out the [-41, 1, 17⟩ comma in the 5-limit.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.30 | -3.71 | +5.09 | +4.79 | +5.20 | -5.75 | +7.38 | -0.61 | -1.86 | -1.22 | -2.19 |
Relative (%) | -36.2 | -21.3 | +29.3 | +27.5 | +29.9 | -33.0 | +42.5 | -3.5 | -10.7 | -7.0 | -12.6 | |
Steps (reduced) |
109 (40) |
160 (22) |
194 (56) |
219 (12) |
239 (32) |
255 (48) |
270 (63) |
282 (6) |
293 (17) |
303 (27) |
312 (36) |
Intervals
Steps | Cents | Approximate Ratios | Ups and Downs Notation (Dual Flat Fifth 40\69) |
Ups and Downs Notation (Dual Sharp Fifth 41\69) |
---|---|---|---|---|
0 | 0 | 1/1 | D | D |
1 | 17.391 | ^D, vvE♭♭ | ^D, vE♭ | |
2 | 34.783 | ^^D, vE♭♭ | ^^D, E♭ | |
3 | 52.174 | 32/31, 33/32, 34/33, 35/34 | ^3D, E♭♭ | ^3D, v10E |
4 | 69.565 | 25/24, 26/25 | D♯, v3E♭ | ^4D, v9E |
5 | 86.957 | 20/19, 21/20 | ^D♯, vvE♭ | ^5D, v8E |
6 | 104.348 | 17/16, 35/33 | ^^D♯, vE♭ | ^6D, v7E |
7 | 121.739 | ^3D♯, E♭ | ^7D, v6E | |
8 | 139.13 | 13/12 | D𝄪, v3E | ^8D, v5E |
9 | 156.522 | 23/21, 34/31, 35/32 | ^D𝄪, vvE | ^9D, v4E |
10 | 173.913 | 21/19, 31/28, 32/29 | ^^D𝄪, vE | ^10D, v3E |
11 | 191.304 | 19/17, 29/26 | E | D♯, vvE |
12 | 208.696 | 26/23, 35/31 | ^E, vvF♭ | ^D♯, vE |
13 | 226.087 | 33/29 | ^^E, vF♭ | E |
14 | 243.478 | 23/20 | ^3E, F♭ | ^E, vF |
15 | 260.87 | E♯, v3F | F | |
16 | 278.261 | 20/17, 34/29 | ^E♯, vvF | ^F, vG♭ |
17 | 295.652 | 19/16 | ^^E♯, vF | ^^F, G♭ |
18 | 313.043 | 6/5 | F | ^3F, v10G |
19 | 330.435 | 23/19, 29/24 | ^F, vvG♭♭ | ^4F, v9G |
20 | 347.826 | ^^F, vG♭♭ | ^5F, v8G | |
21 | 365.217 | 21/17, 37/30 | ^3F, G♭♭ | ^6F, v7G |
22 | 382.609 | 5/4 | F♯, v3G♭ | ^7F, v6G |
23 | 400 | 29/23 | ^F♯, vvG♭ | ^8F, v5G |
24 | 417.391 | 14/11 | ^^F♯, vG♭ | ^9F, v4G |
25 | 434.783 | ^3F♯, G♭ | ^10F, v3G | |
26 | 452.174 | 13/10 | F𝄪, v3G | F♯, vvG |
27 | 469.565 | 21/16 | ^F𝄪, vvG | ^F♯, vG |
28 | 486.957 | ^^F𝄪, vG | G | |
29 | 504.348 | G | ^G, vA♭ | |
30 | 521.739 | 23/17 | ^G, vvA♭♭ | ^^G, A♭ |
31 | 539.13 | ^^G, vA♭♭ | ^3G, v10A | |
32 | 556.522 | 29/21 | ^3G, A♭♭ | ^4G, v9A |
33 | 573.913 | 32/23 | G♯, v3A♭ | ^5G, v8A |
34 | 591.304 | 31/22 | ^G♯, vvA♭ | ^6G, v7A |
35 | 608.696 | 37/26 | ^^G♯, vA♭ | ^7G, v6A |
36 | 626.087 | 23/16, 33/23 | ^3G♯, A♭ | ^8G, v5A |
37 | 643.478 | 29/20 | G𝄪, v3A | ^9G, v4A |
38 | 660.87 | ^G𝄪, vvA | ^10G, v3A | |
39 | 678.261 | 34/23, 37/25 | ^^G𝄪, vA | G♯, vvA |
40 | 695.652 | A | ^G♯, vA | |
41 | 713.043 | ^A, vvB♭♭ | A | |
42 | 730.435 | 29/19, 32/21, 35/23 | ^^A, vB♭♭ | ^A, vB♭ |
43 | 747.826 | 20/13, 37/24 | ^3A, B♭♭ | ^^A, B♭ |
44 | 765.217 | A♯, v3B♭ | ^3A, v10B | |
45 | 782.609 | 11/7 | ^A♯, vvB♭ | ^4A, v9B |
46 | 800 | 35/22 | ^^A♯, vB♭ | ^5A, v8B |
47 | 817.391 | 8/5 | ^3A♯, B♭ | ^6A, v7B |
48 | 834.783 | 34/21 | A𝄪, v3B | ^7A, v6B |
49 | 852.174 | ^A𝄪, vvB | ^8A, v5B | |
50 | 869.565 | 33/20 | ^^A𝄪, vB | ^9A, v4B |
51 | 886.957 | 5/3 | B | ^10A, v3B |
52 | 904.348 | 32/19 | ^B, vvC♭ | A♯, vvB |
53 | 921.739 | 17/10, 29/17 | ^^B, vC♭ | ^A♯, vB |
54 | 939.13 | ^3B, C♭ | B | |
55 | 956.522 | 33/19 | B♯, v3C | ^B, vC |
56 | 973.913 | ^B♯, vvC | C | |
57 | 991.304 | 23/13 | ^^B♯, vC | ^C, vD♭ |
58 | 1008.696 | 34/19 | C | ^^C, D♭ |
59 | 1026.087 | 29/16 | ^C, vvD♭♭ | ^3C, v10D |
60 | 1043.478 | 31/17 | ^^C, vD♭♭ | ^4C, v9D |
61 | 1060.87 | 24/13, 35/19 | ^3C, D♭♭ | ^5C, v8D |
62 | 1078.261 | C♯, v3D♭ | ^6C, v7D | |
63 | 1095.652 | 32/17 | ^C♯, vvD♭ | ^7C, v6D |
64 | 1113.043 | 19/10 | ^^C♯, vD♭ | ^8C, v5D |
65 | 1130.435 | 25/13 | ^3C♯, D♭ | ^9C, v4D |
66 | 1147.826 | 31/16, 33/17 | C𝄪, v3D | ^10C, v3D |
67 | 1165.217 | ^C𝄪, vvD | C♯, vvD | |
68 | 1182.609 | ^^C𝄪, vD | ^C♯, vD | |
69 | 1200 | 2/1 | D | D |
Proposed names
Degree | Carmen's naming system | Cents | Approximate Ratios* | Error (abs, ¢) |
---|---|---|---|---|
0 | Natural Unison, 1 | 0.000 | 1/1 | 0.000 |
1 | Ptolemy's comma | 17.391 | 100/99 | -0.008 |
2 | Jubilisma, lesser septimal sixth tone | 34.783 | 50/49, 101/99 | -0.193, 0.157 |
3 | lesser septendecimal quartertone, _____ | 52.174 | 34/33, 101/98 | 0.491, -0.028 |
4 | _____ | 69.565 | 76/73 | -0.158 |
5 | Small undevicesimal semitone | 86.957 | 20/19 | -1.844 |
6 | Large septendecimal semitone | 104.348 | 17/16 | -0.608 |
7 | Septimal diatonic semitone | 121.739 | 15/14 | 2.296 |
8 | Tridecimal neutral second | 139.130 | 13/12 | 0.558 |
9 | Vicesimotertial neutral second | 156.522 | 23/21 | -0.972 |
10 | Undevicesimal large neutral second, undevicesimal whole tone | 173.913 | 21/19 | 0.645 |
11 | Quasi-meantone | 191.304 | 19/17 | -1.253 |
12 | Whole tone | 208.696 | 9/8 | 4.786 |
13 | Septimal whole tone | 226.087 | 8/7 | -5.087 |
14 | Vicesimotertial semifourth | 243.478 | 23/20 | 1.518 |
15 | Subminor third, undetricesimal subminor third | 260.870 | 7/6, 29/25 | -6.001, 3.920 |
16 | Vicesimotertial subminor third | 278.261 | 27/23 | 0.670 |
17 | Pythagorean minor third | 295.652 | 32/27 | 1.517 |
18 | Classic minor third | 313.043 | 6/5 | -2.598 |
19 | Vicesimotertial supraminor third | 330.435 | 23/19 | -0.327 |
20 | Undecimal neutral third | 347.826 | 11/9 | 0.418 |
21 | Septendecimal submajor third | 365.217 | 21/17 | -0.608 |
22 | Classic major third | 382.609 | 5/4 | -3.705 |
23 | Undetricesimal major third, Septendecimal major third | 400.000 | 29/23, 34/27 | -1.303, 0.910 |
24 | Undecimal major third | 417.391 | 14/11 | -0.117 |
25 | Supermajor third | 434.783 | 9/7 | -0.301 |
26 | Barbados third | 452.174 | 13/10 | -2.040 |
27 | Septimal sub-fourth | 469.565 | 21/16 | -1.216 |
28 | _____ | 486.957 | 53/40 | -0.234 |
29 | Just perfect fourth | 504.348 | 4/3 | 6.303 |
30 | Vicesimotertial acute fourth | 521.739 | 23/17 | -1.580 |
31 | Undecimal augmented fourth | 539.130 | 15/11 | 2.180 |
32 | Undecimal superfourth, undetricesimal superfourth | 556.522 | 11/8, 29/21 | 5.204, -2.275 |
33 | Narrow tritone, classic augmented fourth | 573.913 | 7/5, 25/18 | -8.600, 5.196 |
34 | _____ | 591.304 | 31/22 | -2.413 |
35 | High tritone, undevicesimal tritone | 608.696 | 10/7, 27/19 | -8.792, 0.344 |
36 | _____ | 626.087 | 33/23 | 1.088 |
37 | Undetricesimal tritone | 643.478 | 29/20 | 0.215 |
38 | Undevicesimal diminished fifth, undecimal diminished fifth | 660.870 | 19/13, 22/15 | 3.884, -2.180 |
39 | Vicesimotertial grave fifth, _____ | 678.261 | 34/23, 37/25 | 1.580, -0.456 |
40 | Just perfect fifth | 695.652 | 3/2 | -6.303 |
41 | _____ | 713.043 | 80/53 | 0.234 |
42 | Super-fifth, undetricesimal super-fifth | 730.435 | 32/21, 29/19 | 1.216, -1.630 |
43 | Septendecimal subminor sixth | 747.826 | 17/11 | -5.811 |
44 | Subminor sixth | 765.217 | 14/9 | 0.301 |
45 | Undecimal minor sixth | 782.609 | 11/7 | 0.117 |
46 | Septendecimal subminor sixth | 800.000 | 27/17 | -0.910 |
47 | Classic minor sixth | 817.391 | 8/5 | 3.705 |
48 | Septendecimal supraminor sixth | 834.783 | 34/21 | 0.608 |
49 | Undecimal neutral sixth | 852.174 | 18/11 | -0.418 |
50 | Vicesimotertial submajor sixth | 869.565 | 38/23 | 0.327 |
51 | Classic major sixth | 886.957 | 5/3 | 2.598 |
52 | Pythagorean major sixth | 904.348 | 27/16 | -1.517 |
53 | Septendecimal major sixth, undetricesimal major sixth | 921.739 | 17/10, 29/17 | 3.097, -2.883 |
54 | Supermajor sixth, undetricesimal supermajor sixth | 939.130 | 12/7, 50/29 | 6.001, -3.920 |
55 | Vicesimotertial supermajor sixth | 956.522 | 40/23 | -1.518 |
56 | Harmonic seventh | 973.913 | 7/4 | 5.087 |
57 | Pythagorean minor seventh | 991.304 | 16/9 | -4.786 |
58 | Quasi-meantone minor seventh | 1008.696 | 34/19 | 1.253 |
59 | Minor neutral undevicesimal seventh | 1026.087 | 38/21 | -0.645 |
60 | Vicesimotertial neutral seventh | 1043.478 | 42/23 | 0.972 |
61 | Tridecimal neutral seventh | 1060.870 | 24/13 | -0.558 |
62 | Septimal diatonic major seventh | 1078.261 | 28/15 | -2.296 |
63 | Small septendecimal major seventh | 1095.652 | 32/17 | 0.608 |
64 | Small undevicesimal semitone | 1113.043 | 20/19 | 1.844 |
65 | _____ | 1130.435 | 73/38 | 0.158 |
66 | Septendecimal supermajor seventh | 1147.826 | 33/17 | -0.491 |
67 | _____ | 1165.217 | 49/25 | -0.193 |
68 | _____ | 1182.609 | 99/50 | 0.008 |
69 | Octave, 8 | 1200.000 | 2/1 | 0.000 |
*some simpler ratios listed
Regular temperament properties
Subgroup | Comma List | Mapping | Optimal 8ve Stretch (¢) |
Tuning Error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-109 69⟩ | [⟨69 109]] | +1.99 | 1.99 | 11.43 |
2.3.5 | 81/80, [-41 1 17⟩ | [⟨69 109 160]] | +1.86 | 1.64 | 9.40 |
2.3.5.7 | 81/80, 126/125, 4117715/3981312 | [⟨69 109 160 193]] (69d) | +2.49 | 1.79 | 10.28 |
2.3.5.7 | 81/80, 3125/3087, 6144/6125 | [⟨69 109 160 194]] (69) | +0.94 | 2.13 | 12.23 |
Rank 2 temperaments
Periods per 8ve |
Generator | Temperaments |
---|---|---|
1 | 2\69 | Gammy (69de) |
1 | 19\69 | Rarity |
1 | 20\69 | Mohaha (69e) |
1 | 22\69 | Caleb (69) marveltri (69) |
1 | 29\69 | Meantone (69d) |
3 | 5\69 | Ogene (69bceef) |
3 | 6\69 | August (7-limit, 69cdd) Lithium (69) |
3 | 9\69 | Nessafof (69e) |
Scales
- Supermajor[11], 3L 8s – 6 6 6 7 6 6 6 7 6 6 7
- Meantone[7], 5L 2s (gen = 40\69) – 11 11 7 11 11 11 7
- Meantone[12], 7L 5s (gen = 40\69) – 7 4 7 4 7 4 7 7 4 7 4 7
- Lithium[9], 3L 6s – 11 6 6 11 6 6 11 6 6
- Lithium[12], 9L 3s – 5 6 6 6 5 6 6 6 5 6 6 6
Music
- Hypergiant Sakura (2021)
- 69 hours before (2023)