68edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 67edo 68edo 69edo →
Prime factorization 22 × 17
Step size 17.6471¢ 
Fifth 40\68 (705.882¢) (→10\17)
Semitones (A1:m2) 8:4 (141.2¢ : 70.59¢)
Consistency limit 9
Distinct consistency limit 9

68 equal divisions of the octave (abbreviated 68edo or 68ed2), also called 68-tone equal temperament (68tet) or 68 equal temperament (68et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 68 equal parts of about 17.6 ¢ each. Each step represents a frequency ratio of 21/68, or the 68th root of 2.

Theory

68edo's step is half of the step size of 34edo, which does well in the 5-limit but not so well in the 7-limit, and one quarter the size of 17edo, which does well in the 3-limit, but not so well in the 5-limit. The luck continues: 68 is a strong 7-limit system, but does not do as well in the 11-limit; though it's certainly usable for that purpose, it does not represent the 11-limit diamond consistently. However, 68edo maps many higher primes better than it does 11 (specifically 13 and 23 inherited from 17edo, 17 inherited from 34edo, and 19 and 31 new to 68edo), notably being consistent in the entire no-11s 25-odd limit.

As a 7-limit system it tempers out 2048/2025, 245/243, 4000/3969, 15625/15552, 3136/3125, 6144/6125 and 2401/2400. It supports octacot, shrutar, hemiwürschmidt, hemikleismic, clyde and neptune temperaments, and supplies the optimal patent val for 11-limit hemikleismic. It is a sharp-tending system, with the 3rd, 5th and 7th harmonics all sharp.

The 3rd degree of 68edo can be used as a generator for stretched 23edo, which also acts as the quartkeenlig temperament tempering out the quartisma, 385/384 and 6250/6237. It results in a 23edo scale with octaves stretched by 1 step of 68edo (octaves of 1217.65 cents). It also works as a 22L 1s MOS of the quartkeenlig temperament.

The 5th degree of 68edo can be used as a generator for 88cET.

Prime harmonics

Approximation of prime harmonics in 68edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error Absolute (¢) +0.00 +3.93 +1.92 +1.76 -4.26 +6.53 +0.93 +2.49 +7.02 -6.05 +2.02
Relative (%) +0.0 +22.3 +10.9 +10.0 -24.1 +37.0 +5.3 +14.1 +39.8 -34.3 +11.5
Steps
(reduced)
68
(0)
108
(40)
158
(22)
191
(55)
235
(31)
252
(48)
278
(6)
289
(17)
308
(36)
330
(58)
337
(65)

Subsets and supersets

Since 68 factors into 22 × 17, 68edo has subset edos 2, 4, 17, and 34.

Intervals

Degrees Cents Approximate ratios
0 0.00 1/1
1 17.65 64/63, 126/125, 225/224
2 35.29 81/80, 49/48, 50/49
3 52.94 28/27, 36/35, 33/32
4 70.59 25/24, 22/21
5 88.24 21/20, 19/18, 20/19
6 105.88 16/15, 17/16, 18/17
7 123.53 15/14, 14/13
8 141.18 13/12
9 158.82 12/11, 11/10
10 176.47 10/9
11 194.12 28/25, 19/17
12 211.76 9/8
13 229.41 8/7
14 247.06 15/13
15 264.71 7/6
16 282.35 20/17
17 300.00 13/11, 19/16
18 317.65 6/5
19 335.29 11/9, 40/33, 17/14
20 352.94 16/13, 39/32
21 370.59 27/22, 26/21, 21/17
22 388.24 5/4
23 405.88 24/19, 19/15
24 423.53 14/11
25 441.18 9/7
26 458.82 13/10, 17/13
27 476.47 21/16
28 494.12 4/3
29 511.76 75/56
30 529.41 27/20, 19/14
31 547.06 11/8, 15/11
32 564.71 25/18, 18/13, 26/19
33 582.35 7/5
34 600.00 17/12, 24/17
35 617.65 10/7
36 635.29 36/25, 13/9, 19/13
37 652.94 16/11, 22/15
38 670.59 40/27, 28/19
39 688.24 112/75
40 705.88 3/2
41 723.53 32/21
42 741.18 16/13, 26/17
43 758.82 14/9
44 776.47 11/7
45 794.12 19/12, 30/19
46 811.76 8/5
47 829.41 44/27, 21/13, 34/21
48 847.06 13/8, 64/39
49 864.71 18/11, 33/20, 28/17
50 882.35 5/3
51 900.00 22/13, 32/19
52 917.65 17/10
53 935.29 12/7
54 952.94 26/15
55 970.59 7/4
56 988.24 16/9
57 1005.88 25/14, 34/19
58 1023.53 9/5
59 1041.18 11/6, 20/11
60 1058.82 24/13
61 1076.47 28/15, 13/7
62 1094.12 15/8, 32/17, 17/9
63 1111.76 40/21, 36/19, 19/10
64 1129.41 48/25, 21/11
65 1147.06 27/14, 35/18, 64/33
66 1164.71 160/81, 96/49, 49/25
67 1182.35 63/32, 125/64, 448/225
68 1200.00 2/1

Notation

Ups and downs notation

68edo can be notated using ups and downs notation using Helmholtz–Ellis accidentals:

Step Offset 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Sharp Symbol
Heji18.svg
Heji19.svg
Heji20.svg
Heji21.svg
HeQu1.svg
Heji22.svg
Heji23.svg
Heji24.svg
Heji25.svg
Heji26.svg
Heji27.svg
Heji28.svg
HeQu3.svg
Heji29.svg
Heji30.svg
Heji31.svg
Heji32.svg
Heji33.svg
Heji34.svg
Heji35.svg
Flat Symbol
Heji17.svg
Heji16.svg
Heji15.svg
HeQd1.svg
Heji14.svg
Heji13.svg
Heji12.svg
Heji11.svg
Heji10.svg
Heji9.svg
Heji8.svg
HeQd3.svg
Heji7.svg
Heji6.svg
Heji5.svg
Heji4.svg
Heji3.svg
Heji2.svg
Heji1.svg

Sagittal notation

This notation uses the same sagittal sequence as 75-EDO.

Evo flavor

68-EDO Evo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8033/3227/26

Revo flavor

68-EDO Revo Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8033/3227/26

Evo-SZ flavor

68-EDO Evo-SZ Sagittal.svgSagittal notationPeriodic table of EDOs with sagittal notation64/6381/8033/3227/26

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.

Approximation to JI

Zeta peak index

Tuning Strength Closest edo Integer limit
ZPI Steps per octave Step size (cents) Height Integral Gap Edo Octave (cents) Consistent Distinct
354zpi 68.0493056282519 17.6342725163943 7.666604 1.254592 17.034505 68edo 1199.13053111481 10 10

Regular temperament properties

Subgroup Comma list Mapping Optimal
8ve stretch (¢)
Tuning error
Absolute (¢) Relative (%)
2.3.5.7 245/243, 2048/2025, 2401/2400 [68 108 158 191]] −0.983 0.915 5.19
2.3.5.7.11 121/120, 176/175, 245/243, 1375/1372 [68 108 158 191 235]] −0.541 1.206 6.84
2.3.5.7.11.13 121/120, 176/175, 196/195, 245/243, 275/273 [68 108 158 191 235 252]] −0.745 1.191 6.75
2.3.5.7.11.13.17 121/120, 136/135, 154/153, 176/175, 196/195, 275/273 [68 108 158 191 235 252 278]] −0.671 1.118 6.34
2.3.5.7.11.13.17.19 121/120, 136/135, 154/153, 190/189, 176/175, 196/195, 275/273 [68 108 158 191 235 252 278 289]] −0.661 1.046 5.93

Scales

See also: 34edo #Scales and 17edo #Scales.
  • Negative semitone: 14 14 -1 14 14 14 -1 (E is sharper than F, and B is sharper than C)
  • Deeptone[7]: 10 10 9 10 10 10 9
  • Inverse half octave: 4 4 7 4 4 4 4 7 4 4 7 4 4 4 4 7
  • Superpyth quarter octave: 3 3 1 3 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 3 1 3 3 1 3 3 3 1
  • Quartkeenlig[23] (Stretched 23edo): 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2

Music

The Mercury Tree