Diaschismic family
The 5-limit parent comma for the diaschismic family is 2048/2025, the diaschisma. The period is half an octave, and the generator is a fifth. Three periods gives 1800 cents, and decreasing this by two fifths gives the major third. 34edo is a good tuning choice, with 46edo, 56edo, 58edo, or 80edo being other possibilities. Both 12edo and 22edo support it, and retuning them to a MOS of diaschismic gives two scale possibilities.
Srutal aka diaschismic
Subgroup: 2.3.5
Comma list: 2048/2025
Mapping: [⟨2 0 11], ⟨0 1 -2]]
- mapping generators: ~45/32, ~3
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 704.898
- 5-odd-limit diamond monotone: ~3/2 = [600.000 to 720.000] (1\2 to 6\10)
- 5-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 5-odd-limit diamond monotone and tradeoff: ~3/2 = [701.955, 706.843]
Optimal ET sequence: 10, 12, 22, 34, 46, 80, 206c, 286bc
Badness: 0.019915
Overview to extensions
7-limit extensions
To get the 7-limit extensions, we add another comma:
- Pajara derives from 64/63 and is a popular and well-known choice.
- Diaschismic adds 126/125, the starling comma, to obtain 7-limit harmony by more complex methods, but with greater accuracy.
- Srutal adds 4375/4374, the ragisma. It does no significant tuning damage, so we keep the 5-limit label srutal.
- Keen adds 875/864.
- Bidia adds 3136/3125, the hemimean comma.
- Echidna adds 1728/1715, the orwellisma.
- Shrutar adds 245/243, the sensamagic comma.
Pajara, diaschismic, srutal and keen keep the same half-octave period and fifth generator, but shrutar has a generator of a quarter-tone (which can be taken as 36/35, the septimal quarter-tone) and echidna has a generator of 9/7. Bidia has a quarter-octave period and a fifth generator.
Subgroup extensions
Since the diaschisma factors into (256/255)2(289/288) in the 17-limit, it extends naturally to the 2.3.5.17 subgroup, resulting in srutal archagall.
Srutal archagall
The S-expression-based comma list of this temperament is {S16, S17}.
Subgroup: 2.3.5.17
Comma list: 136/135, 256/255
Sval mapping: [⟨2 0 11 5], ⟨0 1 -2 1]]
- mapping generators: ~17/12, ~3
Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 705.1272
Optimal ET sequence: 10, 12, 22, 34, 80, 114, 194bc
Badness: 0.00575
Srutal
Subgroup: 2.3.5.7
Comma list: 2048/2025, 4375/4374
Mapping: [⟨2 0 11 -42], ⟨0 1 -2 15]]
Wedgie: ⟨⟨ 2 -4 30 -11 42 81 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 704.814
- 7- and 9-odd-limit diamond monotone: ~3/2 = [703.448, 705.882] (34\58 to 20\34)
- 7- and 9-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~3/2 = [703.448, 705.882]
Optimal ET sequence: 34d, 46, 80, 126, 206cd, 332bcd
Badness: 0.091504
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 896/891, 1331/1323
Mapping: [⟨2 0 11 -42 -28], ⟨0 1 -2 15 11]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 704.856
Tuning ranges:
- 11-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
- 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 11-odd-limit diamond monotone and tradeoff: ~3/2 = [704.348, 705.882]
Optimal ET sequence: 34d, 46, 80, 126, 206cd
Badness: 0.035315
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 169/168, 176/175, 325/324, 364/363
Mapping: [⟨2 0 11 -42 -28 -18], ⟨0 1 -2 15 11 8]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 704.881
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
- 13-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 15-odd-limit diamond tradeoff: ~3/2 = [701.955, 711.731]
- 13- and 15-odd-limit diamond monotone and tradeoff: ~3/2 = [704.348, 705.882]
Optimal ET sequence: 34d, 46, 80, 206cd, 286bcde
Badness: 0.025286
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 169/168, 176/175, 221/220, 256/255
Mapping: [⟨2 0 11 -42 -28 -18 5], ⟨0 1 -2 15 11 8 1]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.840
Tuning ranges:
- 17-odd-limit diamond monotone: ~3/2 = [704.348, 705.882] (27\46 to 20\34)
- 17-odd-limit diamond tradeoff: ~3/2 = [698.955, 711.731]
- 17-odd-limit diamond monotone and tradeoff: ~3/2 = [704.348, 705.882]
Optimal ET sequence: 34d, 46, 80, 126, 206cd
Badness: 0.018594
19-limit
Srutal, shrutar and bidia have similar 19-limit properties, tempering 190/189, related rank-3 julius.
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 136/135, 169/168, 176/175, 190/189, 221/220, 256/255
Mapping: [⟨2 0 11 -42 -28 -18 5 -55], ⟨0 1 -2 15 11 8 1 20]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.905
Optimal ET sequence: 34dh, 46, 80, 206cd
Badness: 0.017063
Srutaloo
Srutaloo adds 576/575, 736/729 or 208/207, rhymes with Skidoo.
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 221/220, 256/255
Mapping: [⟨2 0 11 -42 -28 -18 5 -55 -10], ⟨0 1 -2 15 11 8 1 20 6]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.899
Optimal ET sequence: 34dh, 46, 80, 206cd
Badness: 0.013555
29-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29
Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 221/220, 232/231, 256/255
Mapping: [⟨2 0 11 -42 -28 -18 5 -55 -10 -76], ⟨0 1 -2 15 11 8 1 20 6 27]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.906
Optimal ET sequence: 34dhj, 46, 80, 206cd
Badness: 0.013203
31-limit
Subgroup: 2.3.5.7.11.13.17.19.23.29.31
Comma list: 136/135, 169/168, 176/175, 190/189, 208/207, 217/216, 221/220, 232/231, 256/255
Mapping: [⟨2 0 11 -42 -28 -18 5 -55 -10 -76 48], ⟨0 1 -2 15 11 8 1 20 6 27 -12]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 704.817
Optimal ET sequence: 46, 80, 126
Badness: 0.015073
Pajara
Pajara is closely associated with 22edo (not to mention Paul Erlich) but other tunings are possible. The 1/2-octave period serves as both a 10/7 and a 7/5. Aside from 22edo, 34 with the val ⟨34 54 79 96] and 56 with the val ⟨56 89 130 158] are are interesting alternatives, with more accpetable fifths, and a tetrad which is more clearly a dominant seventh. As such, they are closer to the tuning of 12edo and of common practice Western music in general, while retaining the distictiveness of a sharp fifth.
Pajara extends nicely to an 11-limit version, for which the 56 tuning can be used, but a good alternative is to make the major thirds pure by setting the fifth to be 706.843 cents. Now 99/98, 100/99, 176/175 and 896/891 are being tempered out.
Subgroup: 2.3.5.7
Comma list: 50/49, 64/63
Mapping: [⟨2 0 11 12], ⟨0 1 -2 -2]]
Wedgie: ⟨⟨ 2 -4 -4 -11 -12 2 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 707.048
- 7- and 9-odd-limit diamond monotone: ~3/2 = [700.000, 720.000] (7\12 to 6\10)
- 7- and 9-odd-limit diamond tradeoff: ~3/2 = [701.955, 715.587]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~3/2 = [701.955, 715.587]
Optimal ET sequence: 10, 12, 22, 34d, 56d
Badness: 0.020033
11-limit
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 99/98
Mapping: [⟨2 0 11 12 26], ⟨0 1 -2 -2 -6]]
Wedgie: ⟨⟨ 2 -4 -4 -12 -11 -12 -26 2 -14 -20 ]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 706.885
Tuning ranges:
- 11-odd-limit diamond monotone: ~3/2 = [700.000, 709.091] (7\12 to 13\22)
- 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 715.587]
- 11-odd-limit diamond monotone and tradeoff: ~3/2 = [701.955, 709.091]
Optimal ET sequence: 10e, 12, 22, 34d, 56d
Badness: 0.020343
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 64/63, 65/63, 99/98
Mapping: [⟨2 0 11 12 26 1], ⟨0 1 -2 -2 -6 2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 708.919
Optimal ET sequence: 10e, 12, 22
Badness: 0.027642
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 50/49, 52/51, 64/63, 65/63, 99/98
Mapping: [⟨2 0 11 12 26 1 5], ⟨0 1 -2 -2 -6 2 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 708.806
Optimal ET sequence: 10e, 12, 22
Badness: 0.020899
Pajarina
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 64/63, 78/77, 99/98
Mapping: [⟨2 0 11 12 26 36], ⟨0 1 -2 -2 -6 -9]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 706.133
Optimal ET sequence: 12f, 22, 34d
Badness: 0.022327
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 50/49, 64/63, 78/77, 85/84, 99/98
Mapping: [⟨2 0 11 12 26 36 5], ⟨0 1 -2 -2 -6 -9 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 706.410
Optimal ET sequence: 12f, 22, 34d
Badness: 0.018375
Pajarita
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 64/63, 66/65
Mapping: [⟨2 0 11 12 26 17], ⟨0 1 -2 -2 -6 -3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 707.450
Optimal ET sequence: 10e, 12f, 22f
Badness: 0.022677
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 40/39, 50/49, 64/63, 66/65, 85/84
Mapping: [⟨2 0 11 12 26 17 5], ⟨0 1 -2 -2 -6 -3 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 707.947
Optimal ET sequence: 10e, 12f, 22f
Badness: 0.019007
Pajarous
Subgroup: 2.3.5.7.11
Comma list: 50/49, 55/54, 64/63
Mapping: [⟨2 0 11 12 -9], ⟨0 1 -2 -2 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 709.578
Tuning ranges:
- 11-odd-limit diamond monotone: ~3/2 = 709.091 (13\22)
- 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 715.803]
- 11-odd-limit diamond monotone and tradeoff: ~3/2 = 709.091
Optimal ET sequence: 10, 12e, 22, 120bce, 142bce
Badness: 0.028349
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 55/54, 64/63, 65/63
Mapping: [⟨2 0 11 12 -9 1], ⟨0 1 -2 -2 5 2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 710.240
Optimal ET sequence: 10, 22, 54f, 76bdff
Badness: 0.025176
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 50/49, 52/51, 55/54, 64/63, 65/63
Mapping: [⟨2 0 11 12 -9 1 5], ⟨0 1 -2 -2 5 2 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 710.221
Optimal ET sequence: 10, 22, 54f, 76bdff
Badness: 0.018249
Pajaro
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 50/49, 55/54, 64/63
Mapping: [⟨2 0 11 12 -9 17], ⟨0 1 -2 -2 5 -3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 710.818
Optimal ET sequence: 10, 22f, 32f, 54ff
Badness: 0.027355
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 40/39, 50/49, 55/54, 64/63, 85/84
Mapping: [⟨2 0 11 12 -9 17 5], ⟨0 1 -2 -2 5 -3 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 710.866
Optimal ET sequence: 10, 22f, 32f, 54ff
Badness: 0.019844
Pajaric
Subgroup: 2.3.5.7.11
Comma list: 45/44, 50/49, 56/55
Mapping: [⟨2 0 11 12 7], ⟨0 1 -2 -2 0]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 705.524
Optimal ET sequence: 10, 12, 22e, 34dee
Badness: 0.023798
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 40/39, 45/44, 50/49, 56/55
Mapping: [⟨2 0 11 12 7 17], ⟨0 1 -2 -2 0 -3]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 707.442
Optimal ET sequence: 10, 12f, 22ef
Badness: 0.020461
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 34/33, 40/39, 45/44, 50/49, 56/55
Mapping: [⟨2 0 11 12 7 17 5], ⟨0 1 -2 -2 0 -3 1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~3/2 = 708.544
Optimal ET sequence: 10, 12f, 22ef
Badness: 0.017592
Hemipaj
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 121/120
Mapping: [⟨2 1 9 10 8], ⟨0 2 -4 -4 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~11/8 = 546.383
Optimal ET sequence: 20, 22, 68d, 90d
Badness: 0.038890
Hemifourths
Subgroup: 2.3.5.7.11
Comma list: 50/49, 64/63, 243/242
Mapping: [⟨2 0 11 12 -1], ⟨0 2 -4 -4 5]]
Optimal tuning (POTE): ~7/5 = 1\2, ~55/32 = 953.093
Optimal ET sequence: 10, 24d, 34d
Badness: 0.048885
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 50/49, 64/63, 78/77, 144/143
Mapping: [⟨2 0 11 12 -1 9], ⟨0 2 -4 -4 5 -1]]
Optimal tuning (POTE): ~7/5 = 1\2, ~26/15 = 953.074
Optimal ET sequence: 10, 24d, 34d
Badness: 0.028755
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 50/49, 64/63, 78/77, 85/84, 144/143
Mapping: [⟨2 0 11 12 -1 9 5], ⟨0 2 -4 -4 5 -1 2]]
Optimal tuning (POTE): ~7/5 = 1\2, ~26/15 = 953.210
Optimal ET sequence: 10, 24d, 34d
Badness: 0.021790
Diaschismic
A simpler characterization than the one given by the normal comma list is that diaschismic adds 126/125 or 5120/5103 to the set of commas, and it can also be called 46 & 58. However described, diaschismic has a 1/2-octave period and a sharp fifth generator like pajara, but not so sharp, giving a more accurate but more complex temperament. 58edo provides an excellent tuning, but an alternative is to make 7/4 just by making the fifth 703.897 cents, as opposed to 703.448 cents for 58edo.
Diaschismic extends naturally to the 17-limit, for which the same tunings may be used, making it one of the most important of the higher-limit rank-2 temperaments. Adding the 11-limit adds the commas 176/175, 896/891 and 441/440. The 13-limit yields 196/195, 351/350, and 364/363; the 17-limit adds 136/135, 221/220, and 442/441. If you want to explore higher-limit harmonies, diaschismic is certainly one excellent way to do it; Mos of 34 notes and even more the 46-note mos will encompass very great deal of it. Of course 46 or 58 equal provide alternatives which in many ways are similar, particularly in the case of 58.
Subgroup: 2.3.5.7
Comma list: 126/125, 2048/2025
Mapping: [⟨2 0 11 31], ⟨0 1 -2 -8]]
Wedgie: ⟨⟨ 2 -4 -16 -11 -31 -26 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 703.681
- 7- and 9-odd-limit diamond monotone: ~3/2 = [700.000, 705.882] (7\12 to 20\34)
- 7- and 9-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 7- and 9-odd-limit diamond monotone and tradeoff: ~3/2 = [701.955, 705.882]
Optimal ET sequence: 12, 46, 58, 104c, 162c
Badness: 0.037914
11-limit
Subgroup: 2.3.5.7.11
Comma list: 126/125, 176/175, 896/891
Mapping: [⟨2 0 11 31 45], ⟨0 1 -2 -8 -12]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 703.714
Tuning ranges:
- 11-odd-limit diamond monotone: ~3/2 = [700.000, 704.348] (7\12 to 27\46)
- 11-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 11-odd-limit diamond monotone and tradeoff: ~3/2 = [701.955, 704.348]
Optimal ET sequence: 12, 46, 58, 104c, 162ce
Badness: 0.025034
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 126/125, 176/175, 196/195, 364/363
Mapping: [⟨2 0 11 31 45 55], ⟨0 1 -2 -8 -12 -15]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 703.704
Tuning ranges:
- 13- and 15-odd-limit diamond monotone: ~3/2 = [703.448, 704.348] (34\58 to 27\46)
- 13-odd-limit diamond tradeoff: ~3/2 = [701.955, 706.843]
- 15-odd-limit diamond tradeoff: ~3/2 = [701.955, 711.731]
- 13- and 15-odd-limit diamond monotone and tradeoff: ~3/2 = [703.448, 704.348]
Optimal ET sequence: 46, 58, 104c, 162cef
Badness: 0.018926
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 126/125, 136/135, 176/175, 196/195, 256/255
Mapping: [⟨2 0 11 31 45 55 5], ⟨0 1 -2 -8 -12 -15 1]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 703.812
Tuning ranges:
- 17-odd-limit diamond monotone: ~3/2 = [703.448, 704.348] (34\58 to 27\46)
- 17-odd-limit diamond tradeoff: ~3/2 = [698.955, 711.731]
- 17-odd-limit diamond monotone and tradeoff: ~3/2 = [703.448, 704.348]
Optimal ET sequence: 46, 58, 104c
Badness: 0.016425
Na"Naa'
Na"Naa' is a remarkable subgroup temperament of 46&58 with a prime harmonic of 23.
Subgroup: 2.3.5.7.11.13.17.23
Comma list: 126/125, 136/135, 176/175, 196/195, 231/230, 256/255
Sval mapping: [⟨2 0 11 31 45 55 5 63], ⟨0 1 -2 -8 -12 -15 1 -17]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 703.870
Optimal ET sequence: 46, 58i, 104ci
Keen
Keen adds 875/864 as well as 2240/2187 to the set of commas. It may also be described as the 22 & 56 temperament. 78edo is a good tuning choice, and remains a good one in the 11-limit, where keen, ⟨⟨ 2 -4 18 -12 … ]], is really more interesting, adding 100/99 and 385/384 to the commas.
Subgroup: 2.3.5.7
Comma list: 875/864, 2048/2025
Mapping: [⟨2 0 11 -23], ⟨0 1 -2 9]]
Wedgie: ⟨⟨ 2 -4 18 -11 23 53 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 707.571
Optimal ET sequence: 22, 56, 78, 134b, 212b, 290bb
Badness: 0.083971
11-limit
Subgroup: 2.3.5.7.11
Comma list: 100/99, 385/384, 1232/1215
Mapping: [⟨2 0 11 -23 26], ⟨0 1 -2 9 -6]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 707.609
Optimal ET sequence: 22, 56, 78, 212be, 290bbe
Badness: 0.045270
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 100/99, 105/104, 144/143, 1078/1053
Mapping: [⟨2 0 11 -23 26 -18], ⟨0 1 -2 9 -6 8]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 707.167
Optimal ET sequence: 22f, 34, 56f
Badness: 0.044877
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 100/99, 105/104, 119/117, 144/143, 154/153
Mapping: [⟨2 0 11 -23 26 -18 5], ⟨0 1 -2 9 -6 8 1]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 707.155
Optimal ET sequence: 22f, 34, 56f
Badness: 0.030297
Keenic
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 100/99, 352/351, 385/384
Mapping: [⟨2 0 11 -23 26 36], ⟨0 1 -2 9 -6 -9]]
Optimal tuning (POTE): ~45/32 = 1\2, ~3/2 = 707.257
Optimal ET sequence: 22, 34, 56
Badness: 0.040351
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 91/90, 100/99, 136/135, 154/153, 256/255
Mapping: [⟨2 0 11 -23 26 36 5], ⟨0 1 -2 9 -6 -9 1]]
Optimal tuning (POTE): ~17/12 = 1\2, ~3/2 = 707.252
Optimal ET sequence: 22, 34, 56
Badness: 0.026917
Bidia
Bidia adds 3136/3125 to the commas, splitting the period into 1/4 octave. It may be called the 12 & 56 temperament.
Subgroup: 2.3.5.7
Comma list: 2048/2025, 3136/3125
Mapping: [⟨4 0 22 43], ⟨0 1 -2 -5]]
Wedgie: ⟨⟨ 4 -8 -20 -22 -43 -24 ]]
Optimal tuning (POTE): ~25/21 = 1\4, ~3/2 = 705.364
Optimal ET sequence: 12, 56, 68, 80, 148d
Badness: 0.056474
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 896/891, 1375/1372
Mapping: [⟨4 0 22 43 71], ⟨0 1 -2 -5 -9]]
Optimal tuning (POTE): ~25/21 = 1\4, ~3/2 = 705.087
Optimal ET sequence: 12, 68, 80
Badness: 0.040191
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 325/324, 640/637, 896/891
Mapping: [⟨4 0 22 43 71 -36], ⟨0 1 -2 -5 -9 8]]
Optimal tuning (POTE): ~25/21 = 1\4, ~3/2 = 705.301
Optimal ET sequence: 12, 68, 80, 148d, 228bcd, 376bbcddf
Badness: 0.041137
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 176/175, 256/255, 325/324, 640/637
Mapping: [⟨4 0 22 43 71 -36 10], ⟨0 1 -2 -5 -9 8 1]]
Optimal tuning (POTE): ~25/21 = 1\4, ~3/2 = 705.334
Optimal ET sequence: 12, 68, 80, 148d, 228bcd, 376bbcddf
Badness: 0.028631
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 136/135, 176/175, 190/189, 256/255, 325/324, 640/637
Mapping: [⟨4 0 22 43 71 -36 10 17], ⟨0 1 -2 -5 -9 8 1 0]]
Optimal tuning (POTE): ~19/16 = 1\4, ~3/2 = 705.339
Optimal ET sequence: 12, 68, 80, 148d, 376bbcddfh
Badness: 0.020590
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 136/135, 176/175, 190/189, 253/252, 256/255, 325/324, 640/637
Mapping: [⟨4 0 22 43 71 -36 10 17 -20], ⟨0 1 -2 -5 -9 8 1 0 6]]
Optimal tunings:
- TE: ~19/16 = 299.797 (~2 = 1199.188), ~3 = 1904.048 (~3/2 = 704.860)
- CWE: ~19/16 = 1\4, ~3/2 = 705.341
- POTE: ~19/16 = 1\4, ~3/2 = 705.337
Optimal ET sequence: 12, 68, 80, 148di
Badness: 0.017301
Echidna
Echidna adds 1728/1715 to the commas and takes 9/7 as a generator. It may be called the 22 & 58 temperament. 58edo or 80edo make for good tunings, or their vals can be added to ⟨138 219 321 388] (138cde). In most of the tunings it has a significantly sharp 7/4 which some prefer.
Echidna becomes more interesting when extended to be an 11-limit temperament by adding 176/175, 540/539 or 896/891 to the commas, where the same tunings can be used as before. It then is able to represent the entire 11-odd-limit diamond to within about six cents of error, within a compass of 24 notes. The 22-note 2mos gives scope for this, and the 36-note mos much more. Better yet, it is related to three important 11-limit edos: 22edo, a trivial tuning, is the smallest consistent in the 11-odd-limit, corresponding to the merge of this temperament with hedgehog; 58edo is the smallest tuning that is distinctly consistent in the 11-odd-limit and 80edo is the third smallest distinctly consistent in the 11-odd-limit.
The generator can be interpreted as 11/10, the period complement of 9/7, as a stack of 11/10 and 9/7 makes 99/70 which is extremely close to 600 ¢ and is equal to it if we temper out S99. Three 11/10's then make a 4/3 (tempering out S10/S11 thus making 10/9 and 12/11 equidistant from 11/10), implying a flat tuning of 4/3.
Like most srutal extensions, the 13- and 17-limit interpretations are possible by observing that since we have tempered out 176/175, tempering out 351/350 and 352/351 which sum to 176/175 is very elegant. In the 17-limit we can equate the half-octave with 17/12 and 24/17 and we can take advantage of the sharp fifth by combining echidna with srutal archagall, leading to a particularly beautiful temperament (one that prefers a very slightly less sharp fifth than srutal archagall). This mapping of 13 and 17 is supported by the patent vals of the three main echidna edos of 22, 58 and 80, of which all except 22 are consistent in the 17-odd-limit.
Subgroup: 2.3.5.7
Comma list: 1728/1715, 2048/2025
Mapping: [⟨2 1 9 2], ⟨0 3 -6 5]]
Wedgie: ⟨⟨ 6 -12 10 -33 -1 57 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~9/7 = 434.856
Optimal ET sequence: 22, 58, 80, 138cd, 218cd
Badness: 0.058033
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 540/539, 896/891
Mapping: [⟨2 1 9 2 12], ⟨0 3 -6 5 -7]]
Optimal tuning (POTE): ~45/32 = 1\2, ~9/7 = 434.852
Minimax tuning:
- 11-odd-limit: ~9/7 = [5/12 0 0 1/12 -1/12⟩
- [[1 0 0 0 0⟩, [7/4 0 0 1/4 -1/4⟩, [2 0 0 -1/2 1/2⟩, [37/12 0 0 5/12 -5/12⟩, [37/12 0 0 -7/12 7/12⟩]
- Eigenmonzo (unchanged-interval) basis: 2.11/7
Optimal ET sequence: 22, 58, 80, 138cde, 218cde
Badness: 0.025987
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 351/350, 364/363, 540/539
Mapping: [⟨2 1 9 2 12 19], ⟨0 3 -6 5 -7 -16]]
Optimal tuning (POTE): ~45/32 = 1\2, ~9/7 = 434.756
Optimal ET sequence: 22, 58, 80, 138cde
Badness: 0.023679
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 176/175, 221/220, 256/255, 540/539
Mapping: [⟨2 1 9 2 12 19 6], ⟨0 3 -6 5 -7 -16 3]]
Optimal tuning (POTE): ~17/12 = 1\2, ~9/7 = 434.816
Optimal ET sequence: 22, 58, 80, 138cde
Badness: 0.020273
Echidnic
Subgroup: 2.3.5.7
Comma list: 686/675, 1029/1024
Mapping: [⟨2 2 7 6], ⟨0 3 -6 -1]]
Wedgie: ⟨⟨ 6 -12 -2 -33 -20 29 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~8/7 = 234.492
Optimal ET sequence: 10, 36, 46, 194bcd, 240bcd, 286bcd, 332bccdd
Badness: 0.072246
11-limit
Subgroup: 2.3.5.7.11
Comma list: 385/384, 441/440, 686/675
Mapping: [⟨2 2 7 6 3], ⟨0 3 -6 -1 10]]
Optimal tuning (POTE): ~45/32 = 1\2, ~8/7 = 235.096
Optimal ET sequence: 10, 36e, 46, 102, 148, 342bcdd
Badness: 0.045127
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 91/90, 169/168, 385/384, 441/440
Mapping: [⟨2 2 7 6 3 7], ⟨0 3 -6 -1 10 1]]
Optimal tuning (POTE): ~45/32 = 1\2, ~8/7 = 235.088
Optimal ET sequence: 10, 46, 102, 148f, 194bcdf
Badness: 0.028874
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 91/90, 136/135, 154/153, 169/168, 256/255
Mapping: [⟨2 2 7 6 3 7 7], ⟨0 3 -6 -1 10 1 3]]
Optimal tuning (POTE): ~17/12 = 1\2, ~8/7 = 235.088
Optimal ET sequence: 10, 46, 102, 148f, 194bcdf
Badness: 0.019304
- Compositions
Shrutar
Shrutar adds 245/243 to the commas, and also tempers out 6144/6125. It can also be described as 22&46. Its generator can be taken as either 36/35 or 35/24; the latter is interesting since along with 15/14 and 21/20, it connects opposite sides of a hexany. 68edo makes for a good tuning, but another excellent choice is a generator of 14(1/7), making 7's just.
By adding 121/120 or 176/175 to the commas, shrutar can be extended to the 11-limit, which loses a bit of accuracy, but picks up low-complexity 11-limit harmony, making shrutar quite an interesting 11-limit system. 68, 114 or a 14(1/7) generator can again be used as tunings.
Subgroup: 2.3.5.7
Comma list: 245/243, 2048/2025
Mapping: [⟨2 1 9 -2], ⟨0 2 -4 7]]
Wedgie: ⟨⟨ 4 -8 14 -22 11 55 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~35/24 = 652.811
Optimal ET sequence: 22, 46, 68, 182b, 250bc
Badness: 0.189510
11-limit
Subgroup: 2.3.5.7.11
Comma list: 121/120, 176/175, 245/243
Mapping: [⟨2 1 9 -2 8], ⟨0 2 -4 7 -1]]
Optimal tuning (POTE): ~45/32 = 1\2, ~16/11 = 652.680
Optimal ET sequence: 22, 46, 68, 114, 296bce, 410bce
Badness: 0.084098
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 121/120, 176/175, 196/195, 245/243
Mapping: [⟨2 1 9 -2 8 -10], ⟨0 2 -4 7 -1 16]]
Optimal tuning (POTE): ~45/32 = 1\2, ~16/11 = 652.654
Optimal ET sequence: 22f, 24f, 46, 68, 114
Badness: 0.079358
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 121/120, 136/135, 154/153, 176/175, 196/195
Mapping: [⟨2 1 9 -2 8 -10 6], ⟨0 2 -4 7 -1 16 2]]
Optimal tuning (POTE): ~17/12 = 1\2, ~16/11 = 652.647
Optimal ET sequence: 22f, 24f, 46, 68, 114
Badness: 0.049392
19-limit
Subgroup: 2.3.5.7.11.13.17.19
Comma list: 121/120, 136/135, 154/153, 176/175, 196/195, 343/342
Mapping: [⟨2 1 9 -2 8 -10 6 -10], ⟨0 2 -4 7 -1 16 2 17]]
Optimal tuning (POTE): ~17/12 = 1\2, ~16/11 = 652.730
Optimal ET sequence: 22fh, 24fh, 46, 68, 114, 182bef
Badness: 0.044197
23-limit
Subgroup: 2.3.5.7.11.13.17.19.23
Comma list: 121/120, 136/135, 154/153, 176/175, 196/195, 253/252, 343/342
Mapping: [⟨2 1 9 -2 8 -10 6 -10 -4], ⟨0 2 -4 7 -1 16 2 17 12]]
Optimal tuning (POTE): ~17/12 = 1\2, ~16/11 = 652.708
Optimal ET sequence: 22fh, 46, 68, 114
Badness: 0.035137
Sruti
Subgroup: 2.3.5.7
Comma list: 2048/2025, 19683/19600
Mapping: [⟨2 0 11 -15], ⟨0 2 -4 13]]
Wedgie: ⟨⟨ 4 -8 26 -22 30 83 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~140/81 = 951.876
Optimal ET sequence: 24, 34d, 58, 150cd, 208ccdd, 266ccdd
Badness: 0.117358
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 243/242, 896/891
Mapping: [⟨2 0 11 -15 -1], ⟨0 2 -4 13 5]]
Optimal tuning (POTE): ~45/32 = 1\2, ~121/70 = 951.863
Optimal ET sequence: 24, 34d, 58
Badness: 0.041459
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 176/175, 351/350, 676/675
Mapping: [⟨2 0 11 -15 -1 9], ⟨0 2 -4 13 5 -1]]
Optimal tuning (POTE): ~45/32 = 1\2, ~26/15 = 951.886
Optimal ET sequence: 24, 34d, 58, 150cdeef, 208ccddeeff
Badness: 0.023791
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 144/143, 170/169, 176/175, 221/220
Mapping: [⟨2 0 11 -15 -1 9 5], ⟨0 2 -4 13 5 -1 2]]
Optimal tuning (POTE): ~17/12 = 1\2, ~26/15 = 951.857
Optimal ET sequence: 24, 34d, 58
Badness: 0.020536
Anguirus
Subgroup: 2.3.5.7
Comma list: 49/48, 2048/2025
Mapping: [⟨2 0 11 4], ⟨0 2 -4 1]]
Wedgie: ⟨⟨ 4 -8 2 -22 -8 27 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~7/4 = 953.021
Optimal ET sequence: 10, 24, 34
Badness: 0.077955
11-limit
Subgroup: 2.3.5.7.11
Comma list: 49/48, 56/55, 243/242
Mapping: [⟨2 0 11 4 -1], ⟨0 2 -4 1 5]]
Optimal tuning (POTE): ~45/32 = 1\2, ~7/4 = 952.184
Optimal ET sequence: 10, 24, 34, 58d, 92de
Badness: 0.049253
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 49/48, 56/55, 91/90, 243/242
Mapping: [⟨2 0 11 4 -1 9], ⟨0 2 -4 1 5 -1]]
Optimal tuning (POTE): ~45/32 = 1\2, ~7/4 = 952.309
Optimal ET sequence: 10, 24, 34, 58d, 92ddef
Badness: 0.030829
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 49/48, 56/55, 91/90, 119/117, 154/153
Mapping: [⟨2 0 11 4 -1 9 5], ⟨0 2 -4 1 5 -1 2]]
Optimal tuning (POTE): ~17/12 = 1\2, ~7/4 = 952.330
Optimal ET sequence: 10, 24, 34, 58d, 92ddef
Badness: 0.021796
Shru
Subgroup: 2.3.5.7
Comma list: 392/375, 1323/1280
Mapping: [⟨2 1 9 11], ⟨0 2 -4 -5]]
Wedgie: ⟨⟨ 4 -8 -10 -22 -27 -1 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~10/7 = 650.135
Optimal ET sequence: 2, 22d, 24
Badness: 0.157619
11-limit
Subgroup: 2.3.5.7.11
Comma list: 56/55, 77/75, 1323/1280
Mapping: [⟨2 1 9 11 8], ⟨0 2 -4 -5 -1]]
Optimal tuning (POTE): ~45/32 = 1\2, ~10/7 = 650.130
Optimal ET sequence: 2, 22d, 24
Badness: 0.063483
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 56/55, 77/75, 105/104, 507/500
Mapping: [⟨2 1 9 11 8 15], ⟨0 2 -4 -5 -1 -7]]
Optimal tuning (POTE): ~45/32 = 1\2, ~10/7 = 650.535
Badness: 0.045731
Quadrasruta
Subgroup: 2.3.5.7
Comma list: 2048/2025, 2401/2400
Mapping: [⟨2 0 11 8], ⟨0 4 -8 -3]]
Wedgie: ⟨⟨ 8 -16 -6 -44 -32 31 ]]
Optimal tuning (POTE): ~45/32 = 1\2, ~21/16 = 476.216
Optimal ET sequence: 10, 38c, 48c, 58, 68, 126
Badness: 0.073569
11-limit
Subgroup: 2.3.5.7.11
Comma list: 176/175, 896/891, 2401/2400
Mapping: [⟨2 0 11 8 22], ⟨0 4 -8 -3 -19]]
Optimal tuning (POTE): ~45/32 = 1\2, ~21/16 = 476.118
Optimal ET sequence: 58, 126, 184c, 310bccde
Badness: 0.049018
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 176/175, 196/195, 512/507, 676/675
Mapping: [⟨2 0 11 8 22 9], ⟨0 4 -8 -3 -19 -2]]
Optimal tuning (POTE): ~45/32 = 1\2, ~21/16 = 476.099
Optimal ET sequence: 58, 126f, 184cff
Badness: 0.028463
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 170/169, 176/175, 196/195, 256/255
Mapping: [⟨2 0 11 8 22 9 5], ⟨0 4 -8 -3 -19 -2 4]]
Optimal tuning (POTE): ~17/12 = 1\2, ~21/16 = 476.162
Badness: 0.023820
Quadrafourths
Subgroup: 2.3.5.7.11
Comma list: 243/242, 441/440, 2048/2025
Mapping: [⟨2 0 11 8 -1], ⟨0 4 -8 -3 10]]
Optimal tuning (POTE): ~45/32 = 1\2, ~21/16 = 476.017
Optimal ET sequence: 10, 38c, 48c, 58
Badness: 0.049114
13-limit
Subgroup: 2.3.5.7.11.13
Comma list: 144/143, 196/195, 243/242, 676/675
Mapping: [⟨2 0 11 8 -1 9], ⟨0 4 -8 -3 10 -2]]
Optimal tuning (POTE): ~45/32 = 1\2, ~21/16 = 476.028
Optimal ET sequence: 10, 38c, 48c, 58
Badness: 0.026743
17-limit
Subgroup: 2.3.5.7.11.13.17
Comma list: 136/135, 144/143, 170/169, 196/195, 221/220
Mapping: [⟨2 0 11 8 -1 9 5], ⟨0 4 -8 -3 10 -2 4]]
Optimal tuning (POTE): ~17/12 = 1\2, ~21/16 = 476.077
Optimal ET sequence: 10, 38c, 48c, 58, 126eef, 184ceeff
Badness: 0.022239