290edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 289edo290edo291edo →
Prime factorization 2 × 5 × 29
Step size 4.13793¢
Fifth 170\290 (703.448¢) (→17\29)
Semitones (A1:m2) 30:20 (124.1¢ : 82.76¢)
Dual sharp fifth 170\290 (703.448¢) (→17\29)
Dual flat fifth 169\290 (699.31¢)
Dual major 2nd 49\290 (202.759¢)
Consistency limit 3
Distinct consistency limit 3

290 equal divisions of the octave (290edo), or 290-tone equal temperament (290tet), 290 equal temperament (290et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 290 equal parts of about 4.14 ¢ each.

Theory

Approximation of prime intervals in 290 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.49 -1.49 -0.55 -0.97 -0.53 -1.51 +0.42
relative (%) +0 +36 -36 -13 -24 -13 -36 +10
Steps (reduced) 290 (0) 460 (170) 673 (93) 814 (234) 1003 (133) 1073 (203) 1185 (25) 1232 (72)