Prime factorization
|
2 × 5 × 29
|
Step size
|
4.13793¢
|
Fifth
|
170\290 (703.448¢) (→17\29)
|
Semitones (A1:m2)
|
30:20 (124.1¢ : 82.76¢)
|
Dual sharp fifth
|
170\290 (703.448¢) (→17\29)
|
Dual flat fifth
|
169\290 (699.31¢)
|
Dual major 2nd
|
49\290 (202.759¢)
|
Consistency limit
|
3
|
Distinct consistency limit
|
3
|
290 equal divisions of the octave (290edo), or 290-tone equal temperament (290tet), 290 equal temperament (290et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 290 equal parts of about 4.14 ¢ each.
Theory
Approximation of prime intervals in 290 EDO
Prime number
|
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
Error
|
absolute (¢)
|
+0.00
|
+1.49
|
-1.49
|
-0.55
|
-0.97
|
-0.53
|
-1.51
|
+0.42
|
relative (%)
|
+0
|
+36
|
-36
|
-13
|
-24
|
-13
|
-36
|
+10
|
Steps (reduced)
|
290 (0)
|
460 (170)
|
673 (93)
|
814 (234)
|
1003 (133)
|
1073 (203)
|
1185 (25)
|
1232 (72)
|