266edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 265edo266edo267edo →
Prime factorization 2 × 7 × 19
Step size 4.51128¢
Fifth 156\266 (703.759¢) (→78\133)
Semitones (A1:m2) 28:18 (126.3¢ : 81.2¢)
Dual sharp fifth 156\266 (703.759¢) (→78\133)
Dual flat fifth 155\266 (699.248¢)
Dual major 2nd 45\266 (203.008¢)
Consistency limit 7
Distinct consistency limit 7

266 equal divisions of the octave (266edo), or 266-tone equal temperament (266tet), 266 equal temperament (266et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 266 equal parts of about 4.51 ¢ each.

Theory

Approximation of prime intervals in 266 EDO
Prime number 2 3 5 7 11 13 17 19
Error absolute (¢) +0.00 +1.80 +1.66 +1.10 -0.94 -1.43 -1.20 +0.23
relative (%) +0 +40 +37 +24 -21 -32 -27 +5
Steps (reduced) 266 (0) 422 (156) 618 (86) 747 (215) 920 (122) 984 (186) 1087 (23) 1130 (66)