266edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 265edo266edo267edo →
Prime factorization 2 × 7 × 19
Step size 4.51128¢
Fifth 156\266 (703.759¢) (→78\133)
Semitones (A1:m2) 28:18 (126.3¢ : 81.2¢)
Dual sharp fifth 156\266 (703.759¢) (→78\133)
Dual flat fifth 155\266 (699.248¢)
Dual major 2nd 45\266 (203.008¢)
Consistency limit 7
Distinct consistency limit 7

266 equal divisions of the octave (abbreviated 266edo), or 266-tone equal temperament (266tet), 266 equal temperament (266et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 266 equal parts of about 4.51 ¢ each. Each step of 266edo represents a frequency ratio of 21/266, or the 266th root of 2.

Theory

Approximation of odd harmonics in 266edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +1.80 +1.66 +1.10 -0.90 -0.94 -1.43 -1.05 -1.20 +0.23 -1.61 -1.21
relative (%) +40 +37 +24 -20 -21 -32 -23 -27 +5 -36 -27
Steps
(reduced)
422
(156)
618
(86)
747
(215)
843
(45)
920
(122)
984
(186)
1039
(241)
1087
(23)
1130
(66)
1168
(104)
1203
(139)


This page is a stub. You can help the Xenharmonic Wiki by expanding it.