332edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 331edo332edo333edo →
Prime factorization 22 × 83
Step size 3.61446¢
Fifth 194\332 (701.205¢) (→97\166)
Semitones (A1:m2) 30:26 (108.4¢ : 93.98¢)
Consistency limit 7
Distinct consistency limit 7

332 equal divisions of the octave (332edo), or 332-tone equal temperament (332tet), 332 equal temperament (332et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 332 equal parts of about 3.61 ¢ each.

Theory

332edo tempers out 118098/117649, 134217728/133984375, 29360128/29296875 and 2401/2400 in the 7-limit. It provides the optimal patent val for majvamoid and sedia.

Prime harmonics

Approximation of prime harmonics in 12edo
Harmonic 2 3 5 7 11 13 17 19 23 29 31
Error absolute (¢) +0.0 -2.0 +13.7 +31.2 +48.7 -40.5 -5.0 +2.5 -28.3 -29.6 -45.0
relative (%) +0 -2 +14 +31 +49 -41 -5 +2 -28 -30 -45
Steps
(reduced)
12
(0)
19
(7)
28
(4)
34
(10)
42
(6)
44
(8)
49
(1)
51
(3)
54
(6)
58
(10)
59
(11)

Subsets and supersets

332 factors into 22 × 83, with subset edos 2, 4, 83, and 166.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.3 [-263 166 [332 526]] 0.2367 0.2367 6.55
2.3.5 [-13 17 -6, [-53 10 16 [332 526 771]] 0.0955 0.2778 7.69
2.3.5.7 2401/2400, 19683/19600, 29360128/29296875 [332 526 771 932]] 0.0851 0.2412 6.67

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator* Cents* Associated
Ratio*
Temperaments
1 33\332 119.28 15/14 Septidiasemi
1 75\332 271.08 1024/875 Quasiorwell
1 127\332 459.04 125/96 Majvam
1 143\332 516.87 27/20 Gravity
2 143\332
(23\332)
516.87
(83.13)
27/20
(21/20)
Harry
2 45\332 162.65 1125/1024 Kwazy

* octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct