331edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 330edo331edo332edo →
Prime factorization 331 (prime)
Step size 3.62538¢
Fifth 194\331 (703.323¢)
Semitones (A1:m2) 34:23 (123.3¢ : 83.38¢)
Dual sharp fifth 194\331 (703.323¢)
Dual flat fifth 193\331 (699.698¢)
Dual major 2nd 56\331 (203.021¢)
Consistency limit 5
Distinct consistency limit 5

331 equal divisions of the octave (331edo), or 331-tone equal temperament (331tet), 331 equal temperament (331et) when viewed from a regular temperament perspective, is the tuning system that divides the octave into 331 equal parts of about 3.63 ¢ each.

Theory

331et tempers out 78125000/78121827, 5120/5103 and 1959552/1953125 in the 7-limit; 806736/805255, 1835008/1830125, 1019215872/1019046875, 12005/11979, 16384/16335, 2359296/2358125, 42875/42768, 180224/180075, 1684375/1679616, 968000/964467, 3025/3024, 78408/78125, 1362944/1361367, 4108797/4096000 and 43923/43750 in the 11-limit.

Odd harmonics

Approximation of odd harmonics in 331edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +1.37 +1.60 -0.85 -0.89 -0.26 +0.56 -0.66 +0.18 -0.23 +0.52 -1.08
relative (%) +38 +44 -23 -25 -7 +15 -18 +5 -6 +14 -30
Steps
(reduced)
525
(194)
769
(107)
929
(267)
1049
(56)
1145
(152)
1225
(232)
1293
(300)
1353
(29)
1406
(82)
1454
(130)
1497
(173)

Subsets and supersets

331edo is the 67th prime edo. 662edo, which doubles it, gives a good correction to the harmonics 3 and 5.

Regular temperament properties

Subgroup Comma List Mapping Optimal
8ve Stretch (¢)
Tuning Error
Absolute (¢) Relative (%)
2.9 [-1049 331 331 1049] 0.1402 0.1402 3.87
2.9.15 [-7 17 -12, [-74 -5 23 331 1049 1293] 0.1494 0.1152 3.18
2.9.15.7 65625/65536, 420175/419904, 80387359983/80000000000 331 1049 1293 929] 0.1878 0.1199 3.31
2.9.15.7.11 9801/9800, 41503/41472, 137781/137500, 759375/758912 331 1049 1293 929 1145] 0.1653 0.1163 3.21
2.9.15.7.11.13 729/728, 1575/1573, 10648/10647, 41503/41472, 43904/43875, 53361/53248, 20336647/2028000 331 1049 1293 929 1145 1225] 0.1125 0.1587 4.38
2.9.15.7.11.13.17 729/728, 833/832, 1089/1088, 2025/2023, 10648/10647, 14161/14157, 14175/14144, 43904/43875, 18816/18785, 92823/95744 331 1049 1293 929 1145 1225 1353] 0.0901 0.1568 4.33

Rank-2 temperaments

Table of rank-2 temperaments by generator
Periods
per 8ve
Generator
(reduced)
Cents
(reduced)
Associated
ratio
Temperaments
1 89\331 322.66 6/5 Magicaltet
1 107\331 387.92 5/4 Würschmidt
1 137\331 496.68 5457/4096 Edson

Scales

Music