54edo
← 53edo | 54edo | 55edo → |
54 equal divisions of the octave (abbreviated 54edo or 54ed2), also called 54-tone equal temperament (54tet) or 54 equal temperament (54et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 54 equal parts of about 22.2 ¢ each. Each step represents a frequency ratio of 21/54, or the 54th root of 2.
Theory
54edo is suitable for usage as a dual-fifth tuning system, or alternatively, a no-fifth tuning system. Using the sharp fifth, it can be viewed as two rings of 27edo, which adds better approximations of the 11th and 15th harmonics. Using the flat fifth, it generates an ultrasoft diatonic scale. This scale is so soft, with L/s = 8/7, that it stops sounding like meantone or even flattone, but just sounds like a circulating temperament of 7edo.
The patent val of this edo takes the same fifth as 27edo, but the mapping for harmonic 5 is different. It tempers out 2048/2025 in the 5-limit, making it a diaschismic system. It is the highest edo in which the best mappings of the major 3rd (5/4) and harmonic 7th (7/4), 17\54 and 44\54, are exactly 600 ¢ apart, making them suitable for harmonies using tritone substitutions. In other words, this is the last edo tempering out 50/49. This means it extends quite simply to the 7- and 11-limit using the pajarous mapping and to the 13-limit using the 54f val, falling neatly between the 7- and 13-limit minimax tunings.
The 54cd val makes for an excellent tuning of 7-limit hexe temperament, while the 54bdf val does higher limit muggles about as well as it can be tuned. However, even these best temperament interpretations of 54edo are quite high in badness compared to its immediate neighbours 53- and 55edo, both of which are historically significant for different reasons, leaving it mostly unexplored so far.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.16 | -8.54 | +8.95 | -3.91 | +4.24 | +3.92 | +0.62 | +6.16 | -8.62 | -4.11 | -6.05 |
Relative (%) | +41.2 | -38.4 | +40.3 | -17.6 | +19.1 | +17.6 | +2.8 | +27.7 | -38.8 | -18.5 | -27.2 | |
Steps (reduced) |
86 (32) |
125 (17) |
152 (44) |
171 (9) |
187 (25) |
200 (38) |
211 (49) |
221 (5) |
229 (13) |
237 (21) |
244 (28) |
Subsets and supersets
Since 54 factors into 2 × 33, 54edo has subset edos 2, 3, 6, 9, 18, and 27.
Intervals
Using the sharp fifth as a generator, 54edo requires up to quadruple ups and downs to notate. But using the flat fifth as a generator, it requires up to septuple sharps and flats. Because the flat fifth generates a diatonic scale with a chroma of 1 step, ups and downs are not needed in notation if the flat fifth is used.
Degree | Cents | Ups and downs notation | |
---|---|---|---|
Flat fifth (31\54) | Sharp fifth (16\27) | ||
0 | 0.000 | D | D |
1 | 22.222 | D♯, E♭♭♭♭♭♭♭ | ^D, vE♭ |
2 | 44.444 | D𝄪, E♭♭♭♭♭♭ | ^^D, E♭ |
3 | 66.667 | D♯𝄪, E♭♭♭♭♭ | ^3D, ^E♭ |
4 | 88.889 | D𝄪𝄪, E♭♭♭♭ | ^4D, ^^E♭ |
5 | 111.111 | D♯𝄪𝄪, E♭♭♭ | v3D♯, ^3E♭ |
6 | 133.333 | D𝄪𝄪𝄪, E♭♭ | vvD♯, v4E |
7 | 155.556 | D♯𝄪𝄪𝄪, E♭ | vD♯, v3E |
8 | 177.778 | E | D♯, vvE |
9 | 200.000 | E♯, F♭♭♭♭♭♭ | ^D♯, vE |
10 | 222.222 | E𝄪, F♭♭♭♭♭ | E |
11 | 244.444 | E♯𝄪, F♭♭♭♭ | ^E, vF |
12 | 266.667 | E𝄪𝄪, F♭♭♭ | F |
13 | 288.889 | E♯𝄪𝄪, F♭♭ | ^F, vG♭ |
14 | 311.111 | E𝄪𝄪𝄪, F♭ | ^^F, G♭ |
15 | 333.333 | F | ^3F, ^G♭ |
16 | 355.556 | F♯, G♭♭♭♭♭♭♭ | ^4F, ^^G♭ |
17 | 377.778 | F𝄪, G♭♭♭♭♭♭ | v3F♯, ^3G♭ |
18 | 400.000 | F♯𝄪, G♭♭♭♭♭ | vvF♯, v4G |
19 | 422.222 | F𝄪𝄪, G♭♭♭♭ | vF♯, v3G |
20 | 444.444 | F♯𝄪𝄪, G♭♭♭ | F♯, vvG |
21 | 466.667 | F𝄪𝄪𝄪, G♭♭ | ^F♯, vG |
22 | 488.889 | F♯𝄪𝄪𝄪, G♭ | G |
23 | 511.111 | G | ^G, vA♭ |
24 | 533.333 | G♯, A♭♭♭♭♭♭♭ | ^^G, A♭ |
25 | 555.556 | G𝄪, A♭♭♭♭♭♭ | ^3G, ^A♭ |
26 | 577.778 | G♯𝄪, A♭♭♭♭♭ | ^4G, ^^A♭ |
27 | 600.000 | G𝄪𝄪, A♭♭♭♭ | v3G♯, ^3A♭ |
28 | 622.222 | G♯𝄪𝄪, A♭♭♭ | vvG♯, v4A |
29 | 644.444 | G𝄪𝄪𝄪, A♭♭ | vG♯, v3A |
30 | 666.667 | G♯𝄪𝄪𝄪, A♭ | G♯, vvA |
31 | 688.889 | A | ^G♯, vA |
32 | 711.111 | A♯, B♭♭♭♭♭♭♭ | A |
33 | 733.333 | A𝄪, B♭♭♭♭♭♭ | ^A, vB♭ |
34 | 755.556 | A♯𝄪, B♭♭♭♭♭ | ^^A, B♭ |
35 | 777.778 | A𝄪𝄪, B♭♭♭♭ | ^3A, ^B♭ |
36 | 800.000 | A♯𝄪𝄪, B♭♭♭ | ^4A, ^^B♭ |
37 | 822.222 | A𝄪𝄪𝄪, B♭♭ | v3A♯, ^3B♭ |
38 | 844.444 | A♯𝄪𝄪𝄪, B♭ | vvA♯, v4B |
39 | 866.667 | B | vA♯, v3B |
40 | 888.889 | B♯, C♭♭♭♭♭♭ | A♯, vvB |
41 | 911.111 | B𝄪, C♭♭♭♭♭ | ^A♯, vB |
42 | 933.333 | B♯𝄪, C♭♭♭♭ | B |
43 | 955.556 | B𝄪𝄪, C♭♭♭ | ^B, vC |
44 | 977.778 | B♯𝄪𝄪, C♭♭ | C |
45 | 1000.000 | B𝄪𝄪𝄪, C♭ | ^C, vD♭ |
46 | 1022.222 | C | ^^C, D♭ |
47 | 1044.444 | C♯, D♭♭♭♭♭♭♭ | ^3C, ^D♭ |
48 | 1066.667 | C𝄪, D♭♭♭♭♭♭ | ^4C, ^^D♭ |
49 | 1088.889 | C♯𝄪, D♭♭♭♭♭ | v3C♯, ^3D♭ |
50 | 1111.111 | C𝄪𝄪, D♭♭♭♭ | vvC♯, v4D |
51 | 1133.333 | C♯𝄪𝄪, D♭♭♭ | vC♯, v3D |
52 | 1155.556 | C𝄪𝄪𝄪, D♭♭ | C♯, vvD |
53 | 1177.778 | C♯𝄪𝄪𝄪, D♭ | ^C♯, vD |
54 | 1200.000 | D | D |
Notation
Ups and downs notation
Using Helmholtz–Ellis accidentals, 54edo can also be notated using ups and downs notation:
Step offset | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sharp symbol | ||||||||||||||||||||
Flat symbol |
Here, a sharp raises by eight steps, and a flat lowers by eight steps, so single, double, and triple arrows along with Stein–Zimmerman quarter-tone accidentals can be used to fill in the gap.
Sagittal notation
This notation uses the same sagittal sequence as 61-EDO, and is a superset of the notation for 27-EDO.
Evo flavor
Revo flavor
Evo-SZ flavor
In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.
Octave stretch or compression
54edo’s approximations of 3/1, 5/1, 7/1, 11/1, 13/1, 17/1, 19/1 and 23/1 are all improved by 139ed6, a stretched-octave version of 54edo. The trade-off is a slightly worse 2/1 and 19/1.
If one prefers a compressed-octave tuning instead, 86edt, 126ed5 and 152ed7 are possible choices. They improve upon 54edo’s 3/1, 5/1, 7/1 and 17/1, at the cost of its 2/1, 11/1 and 13/1.
What follows is a comparison of stretched- and compressed-octave 54edo tunings.
- Octave size: 1205.08 ¢
Stretching the octave of 54edo by around 5 ¢ results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 10.15 ¢. The tuning 139ed6 does this. So does the tuning 262zpi whose octave is identical to 139ed6 within 0.2 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.08 | -5.08 | +10.15 | +3.21 | +0.00 | +0.92 | -7.09 | -10.15 | +8.29 | -0.50 | +5.08 |
Relative (%) | +22.7 | -22.7 | +45.5 | +14.4 | +0.0 | +4.1 | -31.8 | -45.5 | +37.1 | -2.2 | +22.7 | |
Steps (reduced) |
54 (54) |
85 (85) |
108 (108) |
125 (125) |
139 (0) |
151 (12) |
161 (22) |
170 (31) |
179 (40) |
186 (47) |
193 (54) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.40 | +6.00 | -1.86 | -2.01 | +4.61 | -5.08 | -9.41 | -8.95 | -4.15 | +4.58 | -5.43 | +10.15 |
Relative (%) | +1.8 | +26.9 | -8.3 | -9.0 | +20.7 | -22.7 | -42.2 | -40.1 | -18.6 | +20.5 | -24.3 | +45.5 | |
Steps (reduced) |
199 (60) |
205 (66) |
210 (71) |
215 (76) |
220 (81) |
224 (85) |
228 (89) |
232 (93) |
236 (97) |
240 (101) |
243 (104) |
247 (108) |
- Octave size: 1204.75 ¢
Stretching the octave of 54edo by around 4.5 ¢ results in improved primes 3, 5, 7, 11, 13 and 17, but a worse prime 2. This approximates all harmonics up to 16 within 11.12 ¢. The tuning 151ed7 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.75 | -5.60 | +9.49 | +2.45 | -0.85 | +0.00 | -8.07 | +11.12 | +7.20 | -1.64 | +3.90 |
Relative (%) | +21.3 | -25.1 | +42.5 | +11.0 | -3.8 | +0.0 | -36.2 | +49.8 | +32.3 | -7.3 | +17.5 | |
Steps (reduced) |
54 (54) |
85 (85) |
108 (108) |
125 (125) |
139 (139) |
151 (0) |
161 (10) |
171 (20) |
179 (28) |
186 (35) |
193 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.82 | +4.75 | -3.15 | -3.33 | +3.27 | -6.45 | -10.81 | -10.37 | -5.60 | +3.11 | -6.92 | +8.64 |
Relative (%) | -3.7 | +21.3 | -14.1 | -14.9 | +14.6 | -28.9 | -48.4 | -46.5 | -25.1 | +13.9 | -31.0 | +38.7 | |
Steps (reduced) |
199 (48) |
205 (54) |
210 (59) |
215 (64) |
220 (69) |
224 (73) |
228 (77) |
232 (81) |
236 (85) |
240 (89) |
243 (92) |
247 (96) |
- Octave size: 1203.66 ¢
Stretching the octave of 54edo by around 3.5 ¢ results in improved primes 3, 5, 7, 11 and 13, but worse primes 2 and 11. This approximates all harmonics up to 16 within 10.97 ¢. The tuning 193ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.66 | -7.31 | +7.31 | -0.07 | -3.66 | -3.05 | +10.97 | +7.67 | +3.58 | -5.39 | +0.00 |
Relative (%) | +16.4 | -32.8 | +32.8 | -0.3 | -16.4 | -13.7 | +49.2 | +34.4 | +16.1 | -24.2 | +0.0 | |
Steps (reduced) |
54 (54) |
85 (85) |
108 (108) |
125 (125) |
139 (139) |
151 (151) |
162 (162) |
171 (171) |
179 (179) |
186 (186) |
193 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.83 | +0.61 | -7.39 | -7.67 | -1.17 | -10.97 | +6.88 | +7.24 | -10.36 | -1.74 | +10.47 | +3.66 |
Relative (%) | -21.7 | +2.7 | -33.1 | -34.4 | -5.3 | -49.2 | +30.9 | +32.5 | -46.5 | -7.8 | +47.0 | +16.4 | |
Steps (reduced) |
199 (6) |
205 (12) |
210 (17) |
215 (22) |
220 (27) |
224 (31) |
229 (36) |
233 (40) |
236 (43) |
240 (47) |
244 (51) |
247 (54) |
- Step size: 22.243 ¢, octave size: 1201.12 ¢
Stretching the octave of 54edo by around 1 ¢ results in an improved prime 5, but worse primes 2, 3, 7, 11 and 13. This approximates all harmonics up to 16 within 10.94 ¢. The tuning 263zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.12 | +10.94 | +2.24 | -5.94 | -10.18 | -10.13 | +3.37 | -0.36 | -4.82 | +8.12 | -9.06 |
Relative (%) | +5.0 | +49.2 | +10.1 | -26.7 | -45.8 | -45.6 | +15.1 | -1.6 | -21.7 | +36.5 | -40.7 | |
Step | 54 | 86 | 108 | 125 | 139 | 151 | 162 | 171 | 179 | 187 | 193 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.07 | -9.01 | +5.00 | +4.49 | +10.75 | +0.76 | -3.87 | -3.69 | +0.81 | +9.25 | -0.98 | -7.93 |
Relative (%) | +36.3 | -40.5 | +22.5 | +20.2 | +48.3 | +3.4 | -17.4 | -16.6 | +3.6 | +41.6 | -4.4 | -35.7 | |
Step | 200 | 205 | 211 | 216 | 221 | 225 | 229 | 233 | 237 | 241 | 244 | 247 |
- 54edo
- Step size: 22.222 ¢, octave size: 1200.00 ¢
Pure-octaves 54edo approximates all harmonics up to 16 within 9.16 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +9.16 | +0.00 | -8.54 | +9.16 | +8.95 | +0.00 | -3.91 | -8.54 | +4.24 | +9.16 |
Relative (%) | +0.0 | +41.2 | +0.0 | -38.4 | +41.2 | +40.3 | +0.0 | -17.6 | -38.4 | +19.1 | +41.2 | |
Steps (reduced) |
54 (0) |
86 (32) |
108 (0) |
125 (17) |
140 (32) |
152 (44) |
162 (0) |
171 (9) |
179 (17) |
187 (25) |
194 (32) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.92 | +8.95 | +0.62 | +0.00 | +6.16 | -3.91 | -8.62 | -8.54 | -4.11 | +4.24 | -6.05 | +9.16 |
Relative (%) | +17.6 | +40.3 | +2.8 | +0.0 | +27.7 | -17.6 | -38.8 | -38.4 | -18.5 | +19.1 | -27.2 | +41.2 | |
Steps (reduced) |
200 (38) |
206 (44) |
211 (49) |
216 (0) |
221 (5) |
225 (9) |
229 (13) |
233 (17) |
237 (21) |
241 (25) |
244 (28) |
248 (32) |
- Step size: 22.198 ¢, octave size: 1198.69 ¢
Compressing the octave of 54edo by around 1.5 ¢ results in improved primes 3, 7, 11, 13, 17 and 19, but worse primes 2 and 5. This approximates all harmonics up to 16 within 10.63 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this. So does the tuning 187ed11 whose octave is identical to 13lim WE within 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.31 | +7.07 | -2.62 | +10.63 | +5.76 | +5.27 | -3.92 | -8.05 | +9.33 | -0.29 | +4.46 |
Relative (%) | -5.9 | +31.9 | -11.8 | +47.9 | +26.0 | +23.7 | -17.7 | -36.3 | +42.0 | -1.3 | +20.1 | |
Step | 54 | 86 | 108 | 126 | 140 | 152 | 162 | 171 | 180 | 187 | 194 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.93 | +3.96 | -4.49 | -5.23 | +0.80 | -9.36 | +8.03 | +8.02 | -9.85 | -1.60 | +10.24 | +3.15 |
Relative (%) | -4.2 | +17.8 | -20.2 | -23.6 | +3.6 | -42.2 | +36.2 | +36.1 | -44.4 | -7.2 | +46.1 | +14.2 | |
Step | 200 | 206 | 211 | 216 | 221 | 225 | 230 | 234 | 237 | 241 | 245 | 248 |
- Step size: 22.175 ¢, octave size: 1197.45 ¢
Compressing the octave of 54edo by around 2.5 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.19 ¢. The tuning 264zpi does this. So does the tuning 194ed12 whose octave is identical to 264zpi within 0.01 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.55 | +5.09 | -5.10 | +7.74 | +2.54 | +1.77 | -7.65 | +10.19 | +5.19 | -4.59 | -0.01 |
Relative (%) | -11.5 | +23.0 | -23.0 | +34.9 | +11.5 | +8.0 | -34.5 | +46.0 | +23.4 | -20.7 | -0.0 | |
Step | 54 | 86 | 108 | 126 | 140 | 152 | 162 | 172 | 180 | 187 | 194 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.53 | -0.78 | -9.34 | -10.20 | -4.28 | +7.64 | +2.74 | +2.64 | +6.87 | -7.14 | +4.60 | -2.56 |
Relative (%) | -24.9 | -3.5 | -42.1 | -46.0 | -19.3 | +34.5 | +12.3 | +11.9 | +31.0 | -32.2 | +20.7 | -11.5 | |
Step | 200 | 206 | 211 | 216 | 221 | 226 | 230 | 234 | 238 | 241 | 245 | 248 |
- Octave size: 1196.82 ¢
Compressing the octave of 54edo by around 3 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.36 ¢. The tuning 152ed7 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.18 | +4.09 | -6.36 | +6.27 | +0.91 | +0.00 | -9.54 | +8.18 | +3.09 | -6.78 | -2.27 |
Relative (%) | -14.3 | +18.5 | -28.7 | +28.3 | +4.1 | +0.0 | -43.0 | +36.9 | +13.9 | -30.6 | -10.2 | |
Steps (reduced) |
54 (54) |
86 (86) |
108 (108) |
126 (126) |
140 (140) |
152 (0) |
162 (10) |
172 (20) |
180 (28) |
187 (35) |
194 (42) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -7.86 | -3.18 | +10.36 | +9.44 | -6.86 | +5.00 | +0.05 | -0.09 | +4.09 | -9.96 | +1.74 | -5.45 |
Relative (%) | -35.5 | -14.3 | +46.7 | +42.6 | -31.0 | +22.6 | +0.2 | -0.4 | +18.5 | -44.9 | +7.9 | -24.6 | |
Steps (reduced) |
200 (48) |
206 (54) |
212 (60) |
217 (65) |
221 (69) |
226 (74) |
230 (78) |
234 (82) |
238 (86) |
241 (89) |
245 (93) |
248 (96) |
- Octave size: 1196.47 ¢
Compressing the octave of 54edo by around 3.5 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.59 ¢. The tuning 140ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.53 | +3.53 | -7.06 | +5.45 | +0.00 | -0.99 | -10.59 | +7.06 | +1.91 | -7.99 | -3.53 |
Relative (%) | -15.9 | +15.9 | -31.9 | +24.6 | +0.0 | -4.5 | -47.8 | +31.9 | +8.6 | -36.1 | -15.9 | |
Steps (reduced) |
54 (54) |
86 (86) |
108 (108) |
126 (126) |
140 (0) |
152 (12) |
162 (22) |
172 (32) |
180 (40) |
187 (47) |
194 (54) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -9.16 | -4.52 | +8.98 | +8.03 | -8.30 | +3.53 | -1.44 | -1.62 | +2.54 | +10.63 | +0.15 | -7.06 |
Relative (%) | -41.4 | -20.4 | +40.5 | +36.2 | -37.5 | +15.9 | -6.5 | -7.3 | +11.5 | +48.0 | +0.7 | -31.9 | |
Steps (reduced) |
200 (60) |
206 (66) |
212 (72) |
217 (77) |
221 (81) |
226 (86) |
230 (90) |
234 (94) |
238 (98) |
242 (102) |
245 (105) |
248 (108) |
- Octave size: 1194.13 ¢
Compressing the octave of 54edo by around 6 ¢ results in improved primes 3, 5 and 7, but worse primes 2, 11 and 13. This approximates all harmonics up to 16 within 10.20 ¢. The tuning 126ed5 does this. So does the tuning 86edt whose octave is identical to 126ed5 within 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.87 | -0.19 | +10.38 | +0.00 | -6.05 | -7.56 | +4.52 | -0.37 | -5.87 | +6.04 | +10.20 |
Relative (%) | -26.5 | -0.8 | +47.0 | +0.0 | -27.4 | -34.2 | +20.4 | -1.7 | -26.5 | +27.3 | +46.1 | |
Steps (reduced) |
54 (54) |
86 (86) |
109 (109) |
126 (0) |
140 (14) |
152 (26) |
163 (37) |
172 (46) |
180 (54) |
188 (62) |
195 (69) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.31 | +8.69 | -0.19 | -1.35 | +4.26 | -6.24 | +10.73 | +10.38 | -7.74 | +0.17 | -10.44 | +4.33 |
Relative (%) | +19.5 | +39.3 | -0.8 | -6.1 | +19.3 | -28.2 | +48.5 | +47.0 | -35.0 | +0.8 | -47.2 | +19.6 | |
Steps (reduced) |
201 (75) |
207 (81) |
212 (86) |
217 (91) |
222 (96) |
226 (100) |
231 (105) |
235 (109) |
238 (112) |
242 (116) |
245 (119) |
249 (123) |
Scales
- Approximations of gamelan scales:
- 5-tone pelog: 5 7 19 4 19
- 7-tone pelog: 5 7 11 8 4 13 6
- 5-tone slendro: 11 11 10 11 11
Instruments
- Lumatone