61edo

From Xenharmonic Wiki
Jump to navigation Jump to search
← 60edo61edo62edo →
Prime factorization 61 (prime)
Step size 19.6721¢
Fifth 36\61 (708.197¢)
Semitones (A1:m2) 8:3 (157.4¢ : 59.02¢)
Consistency limit 5
Distinct consistency limit 5

61 equal divisions of the octave (abbreviated 61edo or 61ed2), also called 61-tone equal temperament (61tet) or 61 equal temperament (61et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 61 equal parts of about 19.7 ¢ each. Each step represents a frequency ratio of 21/61, or the 61st root of 2.

Theory

61edo provides the optimal patent val for the freivald (24 & 37) temperament in the 7-, 11- and 13-limit.

61edo is the 18th prime edo, after of 59edo and before of 67edo.

Odd harmonics

Approximation of odd harmonics in 61edo
Harmonic 3 5 7 9 11 13 15 17 19 21 23
Error absolute (¢) +6.24 +7.13 -4.89 -7.19 -0.50 +5.37 -6.30 -6.59 -2.43 +1.35 +1.23
relative (%) +32 +36 -25 -37 -3 +27 -32 -34 -12 +7 +6
Steps
(reduced)
97
(36)
142
(20)
171
(49)
193
(10)
211
(28)
226
(43)
238
(55)
249
(5)
259
(15)
268
(24)
276
(32)

Table of intervals

Steps Cents Ups and downs notation Approximate ratios
0 0 D 1/1
1 19.6721 ↑D, ↓↓E♭ 64/63, 66/65
2 39.3443 ↑↑D, ↓E♭ 40/39
3 59.0164 3D, E♭ 33/32, 65/63
4 78.6885 4D, ↓7E 21/20, 22/21
5 98.3607 5D, ↓6E 35/33, 55/52
6 118.033 6D, ↓5E
7 137.705 7D, ↓4E 13/12, 27/25
8 157.377 D♯, ↓3E 11/10, 12/11, 35/32
9 177.049 ↑D♯, ↓↓E 10/9, 72/65
10 196.721 ↑↑D♯, ↓E
11 216.393 E
12 236.066 ↑E, ↓↓F 8/7, 55/48, 63/55
13 255.738 ↑↑E, ↓F 64/55
14 275.41 F
15 295.082 ↑F, ↓↓G♭ 13/11
16 314.754 ↑↑F, ↓G♭ 6/5, 65/54, 77/64
17 334.426 3F, G♭ 40/33, 63/52
18 354.098 4F, ↓7G 16/13
19 373.77 5F, ↓6G 26/21
20 393.443 6F, ↓5G 5/4, 44/35, 63/50
21 413.115 7F, ↓4G 14/11, 33/26, 80/63
22 432.787 F♯, ↓3G 50/39
23 452.459 ↑F♯, ↓↓G 13/10
24 472.131 ↑↑F♯, ↓G 21/16, 55/42, 72/55
25 491.803 G 4/3
26 511.475 ↑G, ↓↓A♭ 35/26
27 531.148 ↑↑G, ↓A♭ 65/48
28 550.82 3G, A♭ 11/8, 48/35
29 570.492 4G, ↓7A 18/13, 25/18
30 590.164 5G, ↓6A 55/39
31 609.836 6G, ↓5A 78/55
32 629.508 7G, ↓4A 13/9, 36/25
33 649.18 G♯, ↓3A 16/11, 35/24
34 668.852 ↑G♯, ↓↓A
35 688.525 ↑↑G♯, ↓A 52/35
36 708.197 A 3/2
37 727.869 ↑A, ↓↓B♭ 32/21, 55/36
38 747.541 ↑↑A, ↓B♭ 20/13
39 767.213 3A, B♭ 39/25
40 786.885 4A, ↓7B 11/7, 52/33, 63/40
41 806.557 5A, ↓6B 8/5, 35/22
42 826.23 6A, ↓5B 21/13
43 845.902 7A, ↓4B 13/8
44 865.574 A♯, ↓3B 33/20
45 885.246 ↑A♯, ↓↓B 5/3
46 904.918 ↑↑A♯, ↓B 22/13
47 924.59 B
48 944.262 ↑B, ↓↓C 55/32
49 963.934 ↑↑B, ↓C 7/4
50 983.607 C
51 1003.28 ↑C, ↓↓D♭
52 1022.95 ↑↑C, ↓D♭ 9/5, 65/36
53 1042.62 3C, D♭ 11/6, 20/11, 64/35
54 1062.3 4C, ↓7D 24/13, 50/27
55 1081.97 5C, ↓6D
56 1101.64 6C, ↓5D 66/35
57 1121.31 7C, ↓4D 21/11, 40/21
58 1140.98 C♯, ↓3D 64/33
59 1160.66 ↑C♯, ↓↓D 39/20
60 1180.33 ↑↑C♯, ↓D 63/32, 65/33
61 1200 D 2/1

Miscellany

Mnemonic descriptive poem

These 61 equal divisions of the octave,

though rare are assuredly a ROCK-tave (har har),

while the 3rd and 5th harmonics are about six cents sharp,

(and the flattish 15th poised differently on the harp),

the 7th and 11th err by less, around three,

and thus mayhap, a good orgone tuning found to be;

slightly sharp as well, is the 13th harmonic's place,

but the 9th and 17th lack near so much grace,

interestingly the 19th is good but a couple cents flat,

and the 21st and 23rd are but a cent or two sharp!

—by Peter Kosmorsky