59edo
← 58edo | 59edo | 60edo → |
59 equal divisions of the octave (abbreviated 59edo or 59ed2), also called 59-tone equal temperament (59tet) or 59 equal temperament (59et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 59 equal parts of about 20.3 ¢ each. Each step represents a frequency ratio of 21/59, or the 59th root of 2.
Theory
59edo's best fifth is stretched about 9.91 cents from the just interval, and yet its 5/4 is nearly pure (stretched only 0.127 ¢), as the denominator of a convergent to log25. It is a good porcupine tuning, giving in fact the optimal patent val for 11-limit porcupine. This patent val tempers out 250/243 in the 5-limit, 64/63 and 16875/16807 in the 7-limit, and 55/54, 100/99 and 176/175 in the 11-limit.
Using the flat fifth instead of the sharp one allows for the 12 & 35 temperament, which is a kind of bizarre cousin to garibaldi with a generator of an approximate 15/14, tuned to the size of a whole tone, rather than a fifth. The flat fifth also acts as a generator for flattertone temperament in the 59bcd val, a variant of meantone with very flat fifths.
As every other step of 118edo, 59edo is an excellent tuning for the 2.9.5.21.11 11-limit 2*59 subgroup, on which it takes the same tuning and tempers out the same commas. This can be extended to the 19-limit 2*59 subgroup 2.9.5.21.11.39.17.57, for which the 50 & 59 temperament with a subminor third generator provides an interesting temperament.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | 25 | 27 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.91 | +0.13 | +7.45 | -0.52 | -2.17 | -6.63 | +10.04 | -3.26 | +7.57 | -2.98 | +2.23 | +0.25 | +9.39 |
Relative (%) | +48.7 | +0.6 | +36.6 | -2.6 | -10.6 | -32.6 | +49.3 | -16.0 | +37.2 | -14.7 | +11.0 | +1.2 | +46.2 | |
Steps (reduced) |
94 (35) |
137 (19) |
166 (48) |
187 (10) |
204 (27) |
218 (41) |
231 (54) |
241 (5) |
251 (15) |
259 (23) |
267 (31) |
274 (38) |
281 (45) |
Subsets and supersets
59edo is the 17th prime edo, following 53edo and before 61edo. As noted above, 118edo is a superset that yields most of the same tuning properties, but it also adds a near-just third harmonic to enable strong full 11-limit tuning.
Intervals
Steps | Cents | Approximate ratios | Ups and downs notation (Dual flat fifth 34\59) |
Ups and downs notation (Dual sharp fifth 35\59) |
---|---|---|---|---|
0 | 0 | 1/1 | D | D |
1 | 20.3 | ^D, E♭♭♭♭ | ^D, vE♭ | |
2 | 40.7 | D♯, vE♭♭♭ | ^^D, E♭ | |
3 | 61 | 29/28, 30/29 | ^D♯, E♭♭♭ | ^3D, ^E♭ |
4 | 81.4 | 23/22 | D𝄪, vE♭♭ | ^4D, ^^E♭ |
5 | 101.7 | 17/16 | ^D𝄪, E♭♭ | v4D♯, ^3E♭ |
6 | 122 | 15/14 | D♯𝄪, vE♭ | v3D♯, ^4E♭ |
7 | 142.4 | 25/23 | ^D♯𝄪, E♭ | vvD♯, v4E |
8 | 162.7 | 11/10, 34/31 | D𝄪𝄪, vE | vD♯, v3E |
9 | 183.1 | E | D♯, vvE | |
10 | 203.4 | ^E, F♭♭♭ | ^D♯, vE | |
11 | 223.7 | 25/22, 33/29 | E♯, vF♭♭ | E |
12 | 244.1 | 23/20 | ^E♯, F♭♭ | ^E, vF |
13 | 264.4 | 7/6 | E𝄪, vF♭ | F |
14 | 284.7 | 13/11, 20/17, 33/28 | ^E𝄪, F♭ | ^F, vG♭ |
15 | 305.1 | 31/26 | E♯𝄪, vF | ^^F, G♭ |
16 | 325.4 | 29/24 | F | ^3F, ^G♭ |
17 | 345.8 | ^F, G♭♭♭♭ | ^4F, ^^G♭ | |
18 | 366.1 | F♯, vG♭♭♭ | v4F♯, ^3G♭ | |
19 | 386.4 | 5/4 | ^F♯, G♭♭♭ | v3F♯, ^4G♭ |
20 | 406.8 | 19/15, 24/19 | F𝄪, vG♭♭ | vvF♯, v4G |
21 | 427.1 | 32/25 | ^F𝄪, G♭♭ | vF♯, v3G |
22 | 447.5 | 22/17 | F♯𝄪, vG♭ | F♯, vvG |
23 | 467.8 | 17/13 | ^F♯𝄪, G♭ | ^F♯, vG |
24 | 488.1 | F𝄪𝄪, vG | G | |
25 | 508.5 | G | ^G, vA♭ | |
26 | 528.8 | 19/14, 34/25 | ^G, A♭♭♭♭ | ^^G, A♭ |
27 | 549.2 | 11/8 | G♯, vA♭♭♭ | ^3G, ^A♭ |
28 | 569.5 | 32/23 | ^G♯, A♭♭♭ | ^4G, ^^A♭ |
29 | 589.8 | 31/22 | G𝄪, vA♭♭ | v4G♯, ^3A♭ |
30 | 610.2 | ^G𝄪, A♭♭ | v3G♯, ^4A♭ | |
31 | 630.5 | 23/16 | G♯𝄪, vA♭ | vvG♯, v4A |
32 | 650.8 | 16/11 | ^G♯𝄪, A♭ | vG♯, v3A |
33 | 671.2 | 25/17, 28/19 | G𝄪𝄪, vA | G♯, vvA |
34 | 691.5 | A | ^G♯, vA | |
35 | 711.9 | ^A, B♭♭♭♭ | A | |
36 | 732.2 | 26/17, 29/19 | A♯, vB♭♭♭ | ^A, vB♭ |
37 | 752.5 | 17/11 | ^A♯, B♭♭♭ | ^^A, B♭ |
38 | 772.9 | 25/16 | A𝄪, vB♭♭ | ^3A, ^B♭ |
39 | 793.2 | 19/12, 30/19 | ^A𝄪, B♭♭ | ^4A, ^^B♭ |
40 | 813.6 | 8/5 | A♯𝄪, vB♭ | v4A♯, ^3B♭ |
41 | 833.9 | ^A♯𝄪, B♭ | v3A♯, ^4B♭ | |
42 | 854.2 | A𝄪𝄪, vB | vvA♯, v4B | |
43 | 874.6 | B | vA♯, v3B | |
44 | 894.9 | ^B, C♭♭♭ | A♯, vvB | |
45 | 915.3 | 17/10, 22/13 | B♯, vC♭♭ | ^A♯, vB |
46 | 935.6 | 12/7 | ^B♯, C♭♭ | B |
47 | 955.9 | 33/19 | B𝄪, vC♭ | ^B, vC |
48 | 976.3 | ^B𝄪, C♭ | C | |
49 | 996.6 | B♯𝄪, vC | ^C, vD♭ | |
50 | 1016.9 | C | ^^C, D♭ | |
51 | 1037.3 | 20/11, 31/17 | ^C, D♭♭♭♭ | ^3C, ^D♭ |
52 | 1057.6 | C♯, vD♭♭♭ | ^4C, ^^D♭ | |
53 | 1078 | 28/15 | ^C♯, D♭♭♭ | v4C♯, ^3D♭ |
54 | 1098.3 | 32/17 | C𝄪, vD♭♭ | v3C♯, ^4D♭ |
55 | 1118.6 | ^C𝄪, D♭♭ | vvC♯, v4D | |
56 | 1139 | 29/15 | C♯𝄪, vD♭ | vC♯, v3D |
57 | 1159.3 | ^C♯𝄪, D♭ | C♯, vvD | |
58 | 1179.7 | C𝄪𝄪, vD | ^C♯, vD | |
59 | 1200 | 2/1 | D | D |
Notation
Sagittal notation
Best fifth notation
This notation uses the same sagittal sequence as 66-EDO.
Evo flavor

Revo flavor

In the diagrams above, a sagittal symbol followed by an equals sign (=) means that the following comma is the symbol's primary comma (the comma it exactly represents in JI), while an approximately equals sign (≈) means it is a secondary comma (a comma it approximately represents in JI). In both cases the symbol exactly represents the tempered version of the comma in this EDO.
Second-best fifth notation
This notation uses the same sagittal sequence as EDOs 45 and 52.
Evo flavor

Revo flavor

Evo-SZ flavor

Because it contains no Sagittal symbols, this Evo-SZ Sagittal notation is also a Stein–Zimmerman notation.
Octave stretch or compression
59edo’s approximations of 3/1, 7/1 and 11/1 are improved by 93edt, a stretched-octave version of 59edo. The trade-off is a slightly worse 2/1 and 5/1.
211ed12 is also a solid stretched-octave option, which improves 59edo's 3/1, doing a little, but not much, damage to most other primes.
If one prefers compressed octaves, then 296zpi is a viable option. It improves upon 59edo’s 3/1, 7/1 and 13/1 at the cost of a slightly worse 2/1 and 5/1, but substantially worse 11/1.
What follows is a comparison of stretched- and compressed-octave 59edo tunings.
- Octave size: 1206.62 ¢
Stretching the octave of 59edo by around 6.5 ¢ results in improved primes 3, 7 and 11 but worse primes 2, 5 and 13. This approximates all harmonics up to 16 within 8.22 ¢. The tuning 93edt does this. So does the tuning 203ed11 whose octaves are identical within 0.1 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.62 | +0.00 | -7.22 | -4.96 | +6.62 | +5.61 | -0.60 | +0.00 | +1.66 | +0.26 | -7.22 |
Relative (%) | +32.4 | +0.0 | -35.3 | -24.3 | +32.4 | +27.4 | -2.9 | +0.0 | +8.1 | +1.3 | -35.3 | |
Steps (reduced) |
59 (59) |
93 (0) |
117 (24) |
136 (43) |
152 (59) |
165 (72) |
176 (83) |
186 (0) |
195 (9) |
203 (17) |
210 (24) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -8.22 | -4.96 | +6.02 | +3.32 | +6.62 | -5.18 | +8.27 | +5.61 | +6.88 | -8.73 | -0.60 |
Relative (%) | -12.9 | -40.2 | -24.3 | +29.4 | +16.2 | +32.4 | -25.3 | +40.5 | +27.4 | +33.6 | -42.7 | -2.9 | |
Steps (reduced) |
217 (31) |
223 (37) |
229 (43) |
235 (49) |
240 (54) |
245 (59) |
249 (63) |
254 (68) |
258 (72) |
262 (76) |
265 (79) |
269 (83) |
- Octave size: 1204.05 ¢
Stretching the octave of 59edo by around 4 ¢ results in improved primes 3 and 7, but worse primes 2, 5, 11 and 13. This approximates all harmonics up to 16 within 9.53 ¢. The tuning 152ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.05 | -4.05 | +8.10 | +9.53 | +0.00 | -1.57 | -8.26 | -8.10 | -6.83 | -8.58 | +4.05 |
Relative (%) | +19.8 | -19.8 | +39.7 | +46.7 | +0.0 | -7.7 | -40.5 | -39.7 | -33.5 | -42.0 | +19.8 | |
Steps (reduced) |
59 (59) |
93 (93) |
118 (118) |
137 (137) |
152 (0) |
165 (13) |
176 (24) |
186 (34) |
195 (43) |
203 (51) |
211 (59) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +8.33 | +2.48 | +5.48 | -4.21 | -7.13 | -4.05 | +4.39 | -2.78 | -5.62 | -4.53 | +0.15 | +8.10 |
Relative (%) | +40.8 | +12.1 | +26.8 | -20.7 | -34.9 | -19.8 | +21.5 | -13.6 | -27.5 | -22.2 | +0.7 | +39.7 | |
Steps (reduced) |
218 (66) |
224 (72) |
230 (78) |
235 (83) |
240 (88) |
245 (93) |
250 (98) |
254 (102) |
258 (106) |
262 (110) |
266 (114) |
270 (118) |
- Step size: 20.399 ¢, octave size: 1203.54 ¢
Stretching the octave of 59edo by around 3.5 ¢ results in slightly improved primes 3, 7 and 13, but slightly worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 10.08 ¢. The tuning 294zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.54 | -4.85 | +7.08 | +8.35 | -1.31 | -2.99 | -9.78 | -9.70 | -8.51 | +10.08 | +2.23 |
Relative (%) | +17.4 | -23.8 | +34.7 | +40.9 | -6.4 | -14.7 | -47.9 | -47.5 | -41.7 | +49.4 | +11.0 | |
Step | 59 | 93 | 118 | 137 | 152 | 165 | 176 | 186 | 195 | 204 | 211 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.45 | +0.55 | +3.50 | -6.24 | -9.20 | -6.16 | +2.24 | -4.97 | -7.84 | -6.78 | -2.14 | +5.77 |
Relative (%) | +31.6 | +2.7 | +17.2 | -30.6 | -45.1 | -30.2 | +11.0 | -24.4 | -38.4 | -33.2 | -10.5 | +28.3 | |
Step | 218 | 224 | 230 | 235 | 240 | 245 | 250 | 254 | 258 | 262 | 266 | 270 |
- Octave size: 1202.92 ¢
Stretching the octave of 59edo by around 3 ¢ results in improved primes 3 and 7, but worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 9.82 ¢. The tuning 211ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.92 | -5.83 | +5.83 | +6.90 | -2.92 | -4.74 | +8.75 | +8.72 | +9.82 | +7.92 | +0.00 |
Relative (%) | +14.3 | -28.6 | +28.6 | +33.8 | -14.3 | -23.2 | +42.9 | +42.8 | +48.1 | +38.8 | +0.0 | |
Steps (reduced) |
59 (59) |
93 (93) |
118 (118) |
137 (137) |
152 (152) |
165 (165) |
177 (177) |
187 (187) |
196 (196) |
204 (204) |
211 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.15 | -1.82 | +1.07 | -8.72 | +8.65 | -8.75 | -0.41 | -7.66 | +9.82 | -9.55 | -4.96 | +2.92 |
Relative (%) | +20.3 | -8.9 | +5.2 | -42.8 | +42.4 | -42.9 | -2.0 | -37.6 | +48.2 | -46.9 | -24.3 | +14.3 | |
Steps (reduced) |
218 (7) |
224 (13) |
230 (19) |
235 (24) |
241 (30) |
245 (34) |
250 (39) |
254 (43) |
259 (48) |
262 (51) |
266 (55) |
270 (59) |
- Step size: 20.342 ¢, octave size: 1200.18 ¢
Stretching the octave of 59edo by around a fifth of a cent results in slightly improved primes 11 and 13, but slightly worse primes 2, 3, 5 and 7. This approximates all harmonics up to 16 within 9.97 ¢. The tuning 294zpi does this. 294zpi shares error equally between the two mappings of harmonic 3, so it is the best dual-fifth option for 59edo.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.18 | -10.15 | +0.36 | +0.54 | -9.97 | +7.95 | +0.53 | +0.04 | +0.72 | -1.55 | -9.79 |
Relative (%) | +0.9 | -49.9 | +1.8 | +2.7 | -49.0 | +39.1 | +2.6 | +0.2 | +3.5 | -7.6 | -48.1 | |
Step | 59 | 93 | 118 | 137 | 152 | 166 | 177 | 187 | 196 | 204 | 211 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.97 | +8.12 | -9.61 | +0.71 | -2.53 | +0.22 | +8.33 | +0.90 | -2.20 | -1.37 | +3.04 | -9.62 |
Relative (%) | -29.4 | +39.9 | -47.2 | +3.5 | -12.5 | +1.1 | +40.9 | +4.4 | -10.8 | -6.7 | +14.9 | -47.3 | |
Step | 218 | 225 | 230 | 236 | 241 | 246 | 251 | 255 | 259 | 263 | 267 | 270 |
- 59edo
- Step size: 20.339 ¢, octave size: 1200.00 ¢
Pure-octaves 59edo approximates all harmonics up to 16 within 10.04 ¢. So does the tuning 137ed5 whose octave is identical within 0.05 ¢.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.00 | +9.91 | +0.00 | +0.13 | +9.91 | +7.45 | +0.00 | -0.52 | +0.13 | -2.17 | +9.91 |
Relative (%) | +0.0 | +48.7 | +0.0 | +0.6 | +48.7 | +36.6 | +0.0 | -2.6 | +0.6 | -10.6 | +48.7 | |
Steps (reduced) |
59 (0) |
94 (35) |
118 (0) |
137 (19) |
153 (35) |
166 (48) |
177 (0) |
187 (10) |
196 (19) |
204 (27) |
212 (35) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.63 | +7.45 | +10.04 | +0.00 | -3.26 | -0.52 | +7.57 | +0.13 | -2.98 | -2.17 | +2.23 | +9.91 |
Relative (%) | -32.6 | +36.6 | +49.3 | +0.0 | -16.0 | -2.6 | +37.2 | +0.6 | -14.7 | -10.6 | +11.0 | +48.7 | |
Steps (reduced) |
218 (41) |
225 (48) |
231 (54) |
236 (0) |
241 (5) |
246 (10) |
251 (15) |
255 (19) |
259 (23) |
263 (27) |
267 (31) |
271 (35) |
- Step size: 20.320 ¢, octave size: 1198.88 ¢
Compressing the octave of 59edo by around 1 ¢ results in slightly improved primes 3, 7 and 13, but slightly worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 9.95 ¢. Its 13-limit WE tuning and 13-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -1.12 | +8.12 | -2.24 | -2.47 | +7.00 | +4.29 | -3.36 | -4.07 | -3.59 | -6.04 | +5.88 |
Relative (%) | -5.5 | +40.0 | -11.0 | -12.2 | +34.5 | +21.1 | -16.5 | -20.0 | -17.7 | -29.7 | +29.0 | |
Step | 59 | 94 | 118 | 137 | 153 | 166 | 177 | 187 | 196 | 204 | 212 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +9.55 | +3.17 | +5.65 | -4.48 | -7.84 | -5.19 | +2.81 | -4.71 | -7.90 | -7.16 | -2.83 | +4.76 |
Relative (%) | +47.0 | +15.6 | +27.8 | -22.0 | -38.6 | -25.5 | +13.8 | -23.2 | -38.9 | -35.2 | -13.9 | +23.4 | |
Step | 219 | 225 | 231 | 236 | 241 | 246 | 251 | 255 | 259 | 263 | 267 | 271 |
- Step size: 20.301 ¢, octave size: 1197.76 ¢
Compressing the octave of 59edo by around 2 ¢ results in improved primes 3, 7 and 13, but worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 9.91 ¢. Its 7-limit WE tuning and 7-limit TE tuning both do this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.24 | +6.34 | -4.48 | -5.08 | +4.10 | +1.14 | -6.72 | -7.62 | -7.32 | -9.91 | +1.86 |
Relative (%) | -11.0 | +31.2 | -22.1 | -25.0 | +20.2 | +5.6 | -33.1 | -37.5 | -36.0 | -48.8 | +9.1 | |
Step | 59 | 94 | 118 | 137 | 153 | 166 | 177 | 187 | 196 | 204 | 212 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.39 | -1.10 | +1.26 | -8.96 | +7.89 | -9.86 | -1.96 | -9.56 | +7.48 | +8.15 | -7.91 | -0.38 |
Relative (%) | +26.6 | -5.4 | +6.2 | -44.2 | +38.8 | -48.6 | -9.7 | -47.1 | +36.8 | +40.1 | -39.0 | -1.9 | |
Step | 219 | 225 | 231 | 236 | 242 | 246 | 251 | 255 | 260 | 264 | 267 | 271 |
- Octave size: 1197.35 ¢
Compressing the octave of 59edo by around 2.5 ¢ results in improved primes 3, 7 and 13, but worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 9.71 ¢. The tuning 166ed7 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.65 | +5.69 | -5.29 | -6.02 | +3.05 | +0.00 | -7.94 | -8.91 | -8.66 | +8.98 | +0.40 |
Relative (%) | -13.0 | +28.1 | -26.1 | -29.7 | +15.0 | +0.0 | -39.1 | -43.9 | -42.7 | +44.2 | +2.0 | |
Steps (reduced) |
59 (59) |
94 (94) |
118 (118) |
137 (137) |
153 (153) |
166 (0) |
177 (11) |
187 (21) |
196 (30) |
205 (39) |
212 (46) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.89 | -2.65 | -0.32 | +9.71 | +6.22 | +8.74 | -3.69 | +8.98 | +5.69 | +6.33 | -9.74 | -2.25 |
Relative (%) | +19.2 | -13.0 | -1.6 | +47.8 | +30.7 | +43.1 | -18.2 | +44.3 | +28.1 | +31.2 | -48.0 | -11.1 | |
Steps (reduced) |
219 (53) |
225 (59) |
231 (65) |
237 (71) |
242 (76) |
247 (81) |
251 (85) |
256 (90) |
260 (94) |
264 (98) |
267 (101) |
271 (105) |
- Octave size: 1197.24 ¢
Compressing the octave of 59edo by around 3 ¢ results in improved primes 3, 7 and 13, but worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 9.26 ¢. The tuning 212ed12 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.76 | +5.52 | -5.52 | -6.28 | +2.76 | -0.31 | -8.27 | -9.26 | -9.03 | +8.59 | +0.00 |
Relative (%) | -13.6 | +27.2 | -27.2 | -30.9 | +13.6 | -1.5 | -40.8 | -45.6 | -44.5 | +42.3 | +0.0 | |
Steps (reduced) |
59 (59) |
94 (94) |
118 (118) |
137 (137) |
153 (153) |
166 (166) |
177 (177) |
187 (187) |
196 (196) |
205 (205) |
212 (0) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.47 | -3.07 | -0.76 | +9.26 | +5.77 | +8.27 | -4.16 | +8.50 | +5.20 | +5.83 | +10.05 | -2.76 |
Relative (%) | +17.1 | -15.1 | -3.8 | +45.6 | +28.4 | +40.8 | -20.5 | +41.9 | +25.6 | +28.7 | +49.5 | -13.6 | |
Steps (reduced) |
219 (7) |
225 (13) |
231 (19) |
237 (25) |
242 (30) |
247 (35) |
251 (39) |
256 (44) |
260 (48) |
264 (52) |
268 (56) |
271 (59) |
- Step size: 20.282 ¢, octave size: 1196.64 ¢
Compressing the octave of 59edo by around 3.5 ¢ results in greatly improved primes 3, 7 and 13, but far worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 10.09 ¢. The tuning 296zpi does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.36 | +4.55 | -6.72 | -7.68 | +1.19 | -2.01 | -10.09 | +9.11 | +9.24 | +6.49 | -2.17 |
Relative (%) | -16.6 | +22.4 | -33.2 | -37.9 | +5.9 | -9.9 | -49.7 | +44.9 | +45.6 | +32.0 | -10.7 | |
Step | 59 | 94 | 118 | 137 | 153 | 166 | 177 | 188 | 197 | 205 | 212 |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.23 | -5.38 | -3.13 | +6.83 | +3.29 | +5.74 | -6.73 | +5.88 | +2.54 | +3.13 | +7.30 | -5.53 |
Relative (%) | +6.1 | -26.5 | -15.4 | +33.7 | +16.2 | +28.3 | -33.2 | +29.0 | +12.5 | +15.4 | +36.0 | -27.3 | |
Step | 219 | 225 | 231 | 237 | 242 | 247 | 251 | 256 | 260 | 264 | 268 | 271 |
- Octave size: 1196.18 ¢
Compressing the octave of 59edo by around 4 ¢ results in greatly improved primes 3, 7 and 13, but far worse primes 2, 5 and 11. This approximates all harmonics up to 16 within 8.81 ¢. The tuning 153ed6 does this.
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.82 | +3.82 | -7.64 | -8.75 | +0.00 | -3.31 | +8.81 | +7.64 | +7.71 | +4.90 | -3.82 |
Relative (%) | -18.8 | +18.8 | -37.7 | -43.1 | +0.0 | -16.3 | +43.5 | +37.7 | +38.0 | +24.2 | -18.8 | |
Steps (reduced) |
59 (59) |
94 (94) |
118 (118) |
137 (137) |
153 (0) |
166 (13) |
178 (25) |
188 (35) |
197 (44) |
205 (52) |
212 (59) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.47 | -7.13 | -4.92 | +4.99 | +1.40 | +3.82 | -8.68 | +3.89 | +0.52 | +1.08 | +5.22 | -7.64 |
Relative (%) | -2.3 | -35.2 | -24.3 | +24.6 | +6.9 | +18.8 | -42.8 | +19.2 | +2.5 | +5.3 | +25.7 | -37.7 | |
Steps (reduced) |
219 (66) |
225 (72) |
231 (78) |
237 (84) |
242 (89) |
247 (94) |
251 (98) |
256 (103) |
260 (107) |
264 (111) |
268 (115) |
271 (118) |
Instruments
- Lumatone
See Lumatone mapping for 59edo.
Music
- "too powerful if i had social skills" from Melancholie (2023) – Spotify | Bandcamp | YouTube
- "Stay Away From The Fog" from Void (2025) – Spotify | Bandcamp | YouTube
- Chinchillian Fugue – first mode of the Porcupine[7] scale in 59edo