Lumatone mapping for 59edo

From Xenharmonic Wiki
Jump to navigation Jump to search

There are many conceivable ways to map 59edo onto the Lumatone keyboard. However, as both it's 5ths are about as far away from just as possible, neither the sharp or the flat versions of the Standard Lumatone mapping for Pythagorean work particularly well, although the sharp one is slightly closer making it the patent val. In addition, neither covers the full gamut of every octave, with multiple skipped notes.

Lumatone.svg
14
25
16
27
38
49
1
7
18
29
40
51
3
14
25
9
20
31
42
53
5
16
27
38
49
1
0
11
22
33
44
55
7
18
29
40
51
3
14
25
2
13
24
35
46
57
9
20
31
42
53
5
16
27
38
49
1
52
4
15
26
37
48
0
11
22
33
44
55
7
18
29
40
51
3
14
25
54
6
17
28
39
50
2
13
24
35
46
57
9
20
31
42
53
5
16
27
38
49
1
45
56
8
19
30
41
52
4
15
26
37
48
0
11
22
33
44
55
7
18
29
40
51
3
14
25
58
10
21
32
43
54
6
17
28
39
50
2
13
24
35
46
57
9
20
31
42
53
5
16
27
38
49
1
23
34
45
56
8
19
30
41
52
4
15
26
37
48
0
11
22
33
44
55
7
18
29
40
51
3
58
10
21
32
43
54
6
17
28
39
50
2
13
24
35
46
57
9
20
31
42
53
5
23
34
45
56
8
19
30
41
52
4
15
26
37
48
0
11
22
33
44
55
58
10
21
32
43
54
6
17
28
39
50
2
13
24
35
46
57
23
34
45
56
8
19
30
41
52
4
15
26
37
48
58
10
21
32
43
54
6
17
28
39
50
23
34
45
56
8
19
30
41
58
10
21
32
43
23
34
Lumatone.svg
49
58
56
6
15
24
33
54
4
13
22
31
40
49
58
2
11
20
29
38
47
56
6
15
24
33
0
9
18
27
36
45
54
4
13
22
31
40
49
58
7
16
25
34
43
52
2
11
20
29
38
47
56
6
15
24
33
5
14
23
32
41
50
0
9
18
27
36
45
54
4
13
22
31
40
49
58
12
21
30
39
48
57
7
16
25
34
43
52
2
11
20
29
38
47
56
6
15
24
33
10
19
28
37
46
55
5
14
23
32
41
50
0
9
18
27
36
45
54
4
13
22
31
40
49
58
26
35
44
53
3
12
21
30
39
48
57
7
16
25
34
43
52
2
11
20
29
38
47
56
6
15
24
33
51
1
10
19
28
37
46
55
5
14
23
32
41
50
0
9
18
27
36
45
54
4
13
22
31
40
26
35
44
53
3
12
21
30
39
48
57
7
16
25
34
43
52
2
11
20
29
38
47
51
1
10
19
28
37
46
55
5
14
23
32
41
50
0
9
18
27
36
45
26
35
44
53
3
12
21
30
39
48
57
7
16
25
34
43
52
51
1
10
19
28
37
46
55
5
14
23
32
41
50
26
35
44
53
3
12
21
30
39
48
57
51
1
10
19
28
37
46
55
26
35
44
53
3
51
1

Instead, as it is it's optimal patent val, using the expanded mapping of porcupine is probably the best way of organising the intervals of 59edo while being able to access them all, although the range is slightly smaller than the pythagorean mapping.

Lumatone.svg
6
14
9
17
25
33
41
4
12
20
28
36
44
52
1
7
15
23
31
39
47
55
4
12
20
28
2
10
18
26
34
42
50
58
7
15
23
31
39
47
5
13
21
29
37
45
53
2
10
18
26
34
42
50
58
7
15
0
8
16
24
32
40
48
56
5
13
21
29
37
45
53
2
10
18
26
34
3
11
19
27
35
43
51
0
8
16
24
32
40
48
56
5
13
21
29
37
45
53
2
57
6
14
22
30
38
46
54
3
11
19
27
35
43
51
0
8
16
24
32
40
48
56
5
13
21
9
17
25
33
41
49
57
6
14
22
30
38
46
54
3
11
19
27
35
43
51
0
8
16
24
32
40
48
28
36
44
52
1
9
17
25
33
41
49
57
6
14
22
30
38
46
54
3
11
19
27
35
43
51
55
4
12
20
28
36
44
52
1
9
17
25
33
41
49
57
6
14
22
30
38
46
54
15
23
31
39
47
55
4
12
20
28
36
44
52
1
9
17
25
33
41
49
42
50
58
7
15
23
31
39
47
55
4
12
20
28
36
44
52
2
10
18
26
34
42
50
58
7
15
23
31
39
47
29
37
45
53
2
10
18
26
34
42
50
48
56
5
13
21
29
37
45
16
24
32
40
48
35
43


56edo57edo58edoLumatone mapping for 59edo60edo61edo62edo